
Copyright © 2013 Philip Aston, Calum Fitzgerald All rights reserved.

The TCPSniffer

Table of contents

1 Starting the TCPSniffer.. 2

2 Using the TCPSniffer as an HTTP proxy.. 2

3 Using the HttpPluginSnifferFilter.. 3

4 SSL and HTTPS support..4

5 The Sniff 'n' Grind web application... 5

 5.1 Setup page... 5

 5.2 Start TCPSniffer page... 5

 5.3 TCPSniffer results page.. 6

 5.4 The Grinder setup page...6

 5.5 Wait page.. 6

 5.6 The Grinder results page...6

The TCPSniffer

Page 2Copyright © 2013 Philip Aston, Calum Fitzgerald All rights reserved.

The TCPSniffer is misnamed: its not a sniffer (like snoop or Ethereal) at all, but rather
a proxy that you can place between in a TCP stream. It filters the request and response
streams, sending the results to stdout. You can control its behaviour by specifying
different filters. Whilst the TCPSniffer is very useful in its own right, its main purpose as
far as The Grinder goes is to automatically generate scripts for the HTTP plugin.

Note:

If you are not interested in the ability to record scripts for The Grinder 2, use the The Grinder 3's
TCPProxy (../g3/tcpproxy.html) instead. It has more features and fixes.

1 Starting the TCPSniffer

You invoke the TCPSniffer with something like:

CLASSPATH=/opt/grinder/lib/grinder.jar
export CLASSPATH

java net.grinder.TCPSniffer

Say java net.grinder.TCPSniffer -? to get a list of the command line
options.

Suppose you want to capture a conversation with a server on host server, port 7001, you
should say something like:

java net.grinder.TCPSniffer -remoteHost server

The TCPSniffer will start and display the following information:

 class="text">
Initialising standard sniffer engine with the parameters:
 Request filter: net.grinder.tools.tcpsniffer.EchoFilter
 Response filter: net.grinder.tools.tcpsniffer.EchoFilter
 Local host: localhost
 Local port: 8001
 Remote host: localhost
 Remote port: 7001
Engine initialised, listening on port 8001

You can then point your web browser at http://localhost:8001/ and exercise
the application through the browser. The TCPSniffer will echo your requests to the
terminal and forward the requests to localhost:7001, as well as echoing response
from the server the terminal and returning them to the browser.

2 Using the TCPSniffer as an HTTP proxy

One problem of running the TCPSniffer as described above is that it only forwards to a
single remote host. Any links or redirects to other hosts that the application returns to the
browser will bypass the TCPSniffer, meaning that they will not feature in the test script.
This also applies to absolute URLs to the server.

When recording browser traffic, a much better way to use the TCPSniffer is to run it as an
HTTP proxy:

java net.grinder.TCPSniffer -proxy

../g3/tcpproxy.html

The TCPSniffer

Page 3Copyright © 2013 Philip Aston, Calum Fitzgerald All rights reserved.

This will make it listen as an HTTP proxy on port 8001 (the default, you can change it
with -localPort), and forward requests onto the relevant remote host, while echoing
out the HTTP interactions.

You should set your browser connection settings to specify the TCP sniffer as the HTTP
proxy (set host to be the host on which the TCPSniffer is running and port> to be 8001).
You then use your browser as normal, e.g. in the example in the previous section you
should use the direct address http://localhost:7001 in your browser.

The TCPSniffer will run as a proxy for both HTTP and HTTPS if you specify -ssl.

3 Using the HttpPluginSnifferFilter

You can use the TCPSniffer to generate an HTTP plugin script segment suitable for use
with The Grinder.

java net.grinder.TCPSniffer -proxy -httpPluginFilter

The output of the HttpPluginSnifferFilter looks like:

Initialising standard sniffer engine with the parameters:
 Request filter: net.grinder.plugin.http.HttpPluginSnifferFilter
 Response filter: net.grinder.tools.tcpsniffer.NullFilter
 Local host: localhost
 Local port: 8001
 Listening as an HTTP proxy
 Engine initialised, listening on port 8001

 #
 # The Grinder version 2.8.3
 #
 # Script generated by the TCPSniffer at 25-Apr-02 08:17:57
 #

 grinder.processes=1
 grinder.threads=1
 grinder.cycles=0

 grinder.test0.sleepTime=11336
 grinder.test0.parameter.url=http://localhost:7001/
 grinder.test1.sleepTime=12168
 grinder.test1.parameter.url=http://localhost:7001/lah.html
 grinder.test2.sleepTime=411
 grinder.test2.parameter.url=http://localhost:7001/test.gif
 grinder.test3.sleepTime=4786
 grinder.test3.parameter.url=http://localhost:7001/lah.html
 grinder.test3.parameter.header.If-Modified-Since=Tue, 16 Jan 2001 16:26:42 GMT
 grinder.test4.sleepTime=311
 grinder.test4.parameter.url=http://localhost:7001/test.gif
 grinder.test4.parameter.header.If-Modified-Since=Mon, 06 Nov 2000 08:35:58 GMT

The script part of this is sent to the stdout stream, whereas the information messages
are sent to stderr. You can redirect the script part to a file if you wish:

java net.grinder.TCPSniffer -proxy -httpPluginFilter > grinder.properties

You can then use this file with The Grinder.

The TCPSniffer

Page 4Copyright © 2013 Philip Aston, Calum Fitzgerald All rights reserved.

4 SSL and HTTPS support

The TCPSniffer has SSL support. If you are using an old JVM, (earlier than Java
SE 1.4.1) you must first install the JSSE (http://www.oracle.com/technetwork/java/
jsse-136410.html) .

SSL relationships are necessarily point to point. When you interpose the TCPSniffer you
end up with:

Client <--- ssl1 ---> TCPSniffer <--- ssl2 ---> Server

Where ssl1 and ssl2 are two separate SSL connections. Each SSL connection has its own
set of client and server certificates (both of which are optional).

The TCPSniffer will negotiate appropriate certificates for both connections using
certificates specified in a key store. See the JSSE documentation for how to set up a key
store. There are three parameters you can pass as command line options to the TCPSniffer
to specify key store details:

-keyStore file The key store file.

-keyStorePassword password The password for the key store.

-keyStoreType type The type, defaults to jks.

You can also specify these with the corresponding javax.net.ssl.XXX properties.

Here's an example of starting the TCPSniffer as an HTTP/HTTPS proxy using the
testkeys key store provided with the JSSE samples:

java net.grinder.TCPSniffer -ssl -proxy -keyStore testkeys -keyStorePassword passphrase

Even if you are not using client certificates, you probably need to specify a key store.
This is because the proxy needs a server certificate of its own:

Browser -----> [ServerCert] Proxy ----> [ServerCert2] Target

You need to start the proxy with a key store containing a self-signed server certificate.
This is the certificate that the browser will be presented with. If you fail to provide a
server certificate, you will get a No available certificate corresponds to the SSL cipher
suites which are enabled exception. The easiest way to provide a certificate is to copy the
testkeys file from the JSSE samples distribution and start the sniffer using:

java net.grinder.TCPSniffer -ssl -proxy -keyStore testkeys -keyStorePassword passphrase

Alternatively you might want to generate your own. Here's an example:

 PASTON:philipa% keytool -genkey -keystore testkeys -storepass passphrase -keyalg rsa
 What is your first and last name?
 [Unknown]: localhost
 What is the name of your organizational unit?
 [Unknown]: Engineering
 What is the name of your organization?
 [Unknown]: Grinders Inc
 What is the name of your City or Locality?
 [Unknown]: Grindsville
 What is the name of your State or Province?
 [Unknown]: Grindshire
 What is the two-letter country code for this unit?
 [Unknown]: GR

http://www.oracle.com/technetwork/java/jsse-136410.html

The TCPSniffer

Page 5Copyright © 2013 Philip Aston, Calum Fitzgerald All rights reserved.

 Is <CN=localhost, OU=Engineering, O=Grinders Inc, L=Grindsville, ST=Grindshire, C=GR
%gt; correct?
 [no]: yes

 Enter key password for <mykey>
 (RETURN if same as keystore password):
 PASTON:philipa%

The first and last name ought to match the server which you run the proxy on, and you
must specify -keyalg rsa to generate a certificate that works with common browsers.
See the keytool notes in the JDK documentation for how to do more tricks.

You may find NullPointerExceptions when using PKCS12 files generated by
some tools, e.g. openssl. Use the Java keytool utility to maintain key stores and
you'll be all right.

5 The Sniff 'n' Grind web application

Sniff 'n; Grind is Paddy Spencer's J2EE web application that automates the tasks involved
using the TCPSniffer to record and replay HTTPPlugin scripts. This section contains
rather minimal notes on its use.

5.1 Setup page

In the setup page enter the starting URL; this is usually the front page of the application
you're testing. You need to include the protocol in the URL, only HTTP and HTTPS are
currently supported. Click on the button to go to...

5.2 Start TCPSniffer page

This page tells you what you need to change your browser proxy settings to. You need
to so this before clicking on the link to start the page, otherwise your requests will go
through the proxy you normally use and the sniffer won't pick them up. Once you've set
the proxy, click on the Click here to go to... link, and the start URL will be returned in a
new window.

If you specify a certificate in the web.xml file, and a secure starting URL (an HTTPS
rather than HTTP one) then the web application will let you sniff and grind your ssl-
using web application. The only difference you'll notice is that you will be asked to
accept an untrusted certificate from the server. This is because the web application uses
the certificate you give it as a server certificate when you connect to it and as a client
certificate when it connects to your web application. So you'd better make sure that it's
one your app will accept!

Do not close the sniffer window. If you do that you will not be able to end the test and get
your results.

In order not to be a resource hog, the sniffer proxy process will timeout after a given
number of seconds (configurable via the web.xml), so if you don't do anything for a
while, you may find your proxy isn't there any more.

When you've finished the test, close the test window and rest your browser proxy to it's
original settings (you DID note down those settings, didn't you?) and then click on the
stop button. You will be taken to...

The TCPSniffer

Page 6Copyright © 2013 Philip Aston, Calum Fitzgerald All rights reserved.

5.3 TCPSniffer results page

The Sniff 'n' Grind generates a number of files. As a minimum there are two:

• httpsniffer.err - which contains the initial startup information as well as any
runtime errors that might have occurred.

• httpsniffer.out - which contains the details of the test(s).

If you wish to run the test manually, you need to copy these into your
grinder.properties file and run The Grinder in the normal way. You will also
need to cut and paste the various http-plugin-sniffer-post files, if any.

If you instead want to run The Grinder right now, with your recorded results, then click
on the link and go to...

5.4 The Grinder setup page

Despite, or perhaps because of, the vast, bewildering array of properties that can be set
to control a Grinder session, the web application (in its current incarnation) only allows
you to set the numbers of processes, threads and cycles from within the browser. These
default to one of each and have maximum settings (currently hard-coded) of 5 processes,
25 threads and 50 cycles.

The reset button resets the values in the form (as you'd expect) and Grind me, baby! does
what it says, leading to...

5.5 Wait page

The patience page. If I was a real 31337 h4x0r d00d I'd have written some kewl
applet which would keep you entertained with graphical and highly amusing pr0n
animations to keep you entertained while sneakily querying the server for whether The
Grinder has finished. However, I'm not and so you've got a rather dull page with a five
second refresh on it and a note saying, "Wait."

5.6 The Grinder results page

The results page simply presents the contents of the files in the log directory (so if
you've used some huge number of threads and cycles, this page will be BIG) and gives
you the options to re-run the grinder against the same test, but with different properties, or
to record another test.

	Table of contents
	1 Starting the TCPSniffer
	2 Using the TCPSniffer as an HTTP proxy
	3 Using the HttpPluginSnifferFilter
	4 SSL and HTTPS support
	5 The Sniff 'n' Grind web application
	5.1 Setup page
	5.2 Start TCPSniffer page
	5.3 TCPSniffer results page
	5.4 The Grinder setup page
	5.5 Wait page
	5.6 The Grinder results page

