The Grinder 3

Table of contents

I T O <o (] £ USSP
1.2 THe GrNOEr LICENSE.....cciiieieieiie sttt sttt st
2 R I L=] 0 [PSSR P PP
1.2.2 HTTPCIENL....c.eitieeeieeese ettt nesee e
1.2.3 JYENON. .. nre
1.2.4 JEAIT SYNEBX...ccueiiieiieiteeieet ettt e e e
1.2.5 APaChe XMLBEANS.........coiiiiieeeiesiese st
1.2.6 PICOCONTAINEccueeieieitesieeieetieseeee e stestestessessesseeseeseeseesbestessessesseeneeeensensessenne

1.2.8 JSR LBBY.....eevvvvveeeerrsesseesessseeesssessssesssssssssssesssessesssssessesesessssssssessseesseeessssseenes
ST Xe I L= O

The Grinder 3

1.2.20 LOGDACK......eiiuiitieiieiieeeeeie ettt n e sn b 8
220 I 1 o USSP 8
20 2 {1 o TSRS 8
1.2.13 COMPOJUIE....euveeeeereeeesseesteesesseesseessesseesseassesseesseessesseessesssesseessessesseesseansessennes 8
1.2.14 ring-Middleware-fOrmMaL.............cccveierienieie e 8
12,05 JEHLY ..ottt bttt sttt sttt ae s s nans 8
1.2.16 Clojure tOOISIOQGING.eeueeueeeeieriesie sttt 9
1.2.17 SUPPOItiNG [ICENSE tEXL.......ee et 9
1.3 Downloading The GINGES.......cc.coce e 10
I I I 1o 11 o o= o RSP 10
1.3.2 Downloading The Grinder USINg MaVen...........cccevveeeeiieresseeseeseseeseesee s 10
T o] oo TP PURPR PP 11
1421 MAIHTING HISES it 11
1.5 EXEErNal rEfErENCES.......oocuiiieiece et 11
1.5.1 Related SOftWare PrOJECES........cccciveiieiieie et 11
1.5.2 ATTICIES ..t et 15
1.5.3 COMMEEICIBIS. ... eeteieiiiiieeiieie ettt sb e sne b ens 16
P2 0= o L= S 18
2.1 GELING SAEU. ... cceeeeeeeeeeee e 18
2.1.1 The GriNder PrOCESSES........ceeiieeitieiieciteecee et e stee e e s e ere e eesteesaeesseesneesareens 18
2.1.2 TeStS aNd tESE SCIIPLS.....ccveieeireeiieeeesteerie e e e ste et st ee s e e e aesreenneeneens 20
2.1.3 NetWOrk COMMUINICBLION.coviriereesiirienieeieie et neeas 21
2 O U1 o1 | USRS 21
2.1.5 HOW dO | Start The GIiNUEr2......cceoveeeeeseese et 22
2.2 AENtS aNd WOTKENS........oeiiiieiieee e 24
2.2.1 AQENtS AN WOTKENS.......coiiiieiiee ettt st sre e e e sre e enne e 24
2.2.2 The Grinder 3 PropertieS File.........coveueiieiice e 24
P20 T o o] oo TS SRS 28
2.3 TNE CONSOI......ciuiiiiieste sttt sttt b b e nne e 30
2.3.1 The Console User INtEITACE........ccoveieriere et 30
2.3.2 The CONSOIE SEIVICE......coiieiieeesiee ettt sr e 36
2.4 TNE TCPPIOXYttiiteeitee et sieeste st eeae et e ste et e e s saeebeesseeebeesseeebeesseeeteesseeenreesseeas 43
2.4.1 Starting the TCPPIOXYccueiieiecierieeee s eseesee s steeee s sseesee e e e eaesreenneennens 44
2.4.2 Preparing the BrOWSEYc..vceeiieie ettt e e e 44
2.4.3 USING the ECNOFITEN.......cc.ieeeeeee e 46
2.4.4 Using the HTTP TCPProxXy fillters.......ccccveiiririeeiese e 47

Page 2

The Grinder 3

2.4.5 SSL and HTTPS SUPPOIT......ccueruirieeeeieieniesie sttt 51
2.4.6 Using the TCPProxy with other proXies...........cccceveeiieeieeciieeiee e 53
2.4.7 Using the TCPProxy as a port forwarder............ccccveveveeveciecieese e 53
2.4.8 Summary of TCPPrOXY OPLIONS.........cceiievieieesieeiieseeseesieseesreesae e eee e 54
BT o 1] o] £ 55
2.5, 1 SCITPES. . eeeueeueeeest ettt ettt b e h et e b e bbbt bt e e e e e e e e nn e nenre s 55
2.5.2 JYTNON......eieeee e 59
BT T O (o] 11 USSP 60
2.5.4 SCript INSrUMENEALION.ccveceieciecie et nas 61
2.5.5 COOTAINGLION.coieieiiitisiesiesieeeeee ettt sa et b bbb se e e 63
2.5.6 SCHPL GAIIENY...ccueeiecie et e enre e e 64
2.6 PIUGINS.....cee et bttt et e b e 80
2.6.1 The HTTP PlUG-IN...ciiiiieieeeieee et 80
2.7 SAISHICS...eeeueeeecireeceteee et e ettt e et e e et e e et e e et e e e eabeeseaeeeeeaeeeebeeesbeeesnseeesabeeeeabeeeanreenn 85
2.7.1 StANAard SALISHICS.....eveeeieriesierie ettt enes 85
2.7.2 Distribution Of SEatiSHiCS.......ccvvviriririreee s 85
2.7.3 Querying and updating StaliStiCS.......cccuereererieereereeie e se e 85
2.7.4 RegiStering NEW EXPrESSIONS......ccueiueruirrereeeesressessessessessessesessessessessessessessesses 86
2.8 SSL SUPPOIT. ...ttt sttt r e n e r e n e nneene s 86
2.8.1 BEfOre WE DEJIN.....c..eiiiiece ettt 86
2.8.2 Controlling when new SSL sessions are Created..........ccooveveeveeeeeseesveceeseeenns 87
2.8.3 UsiNg client CertifiCales........uivuiiiriiiiesi e 87
P N TSRS 88
2.8.5 Picking a certificate from a key store [Advanced]..........cccceveveninencrenennne 88
2.8.6 DEDUGGING. ...t 89
2.9 AUVICE.. ettt bt et e bt neenre e ns 89
2.9.1 How should | set up a project structure for The Grinder?..........cccccvevveiennee. 89
2.9.2 A Step-By-Step SCript TULOMA........eceeceieie e 91
2.9.3 Weighted Distribution Of TESES........ccceerviieeiierieecieseese e e eee s 9
2.9.4 Garbage COllECHION.......cc.ceeeeeierees ettt 98
2.10 Features of The Grinder 3.........oo oo s 100
2.10.1 Capabilities of The GINAer...........ccoeiieiiiece e e 100
2.10.2 OPEN SOUICE......eiiiietieisiieresieeesiteesssseessssesssseessssaeesseessbeessbeessseessreessnseesnnns 100
2.10.3 SEANUAITS.......cviieriiiiesieeeree ettt e bbbt nean 100
2.10.4 The Grinder ArChItECIUNE.........coviirirecee e 101
2.10.5 CONSOIE......ueiiueeiieieeieeseeiesee e et e e teete e steeeesseesseentesreesteenseeneesseensenneennes 101

The Grinder 3

2.10.6 Statistics, REPOITS, ChartS........coceiienieie e 101
N (OB o | o RS PSS 102
2.10.8 The Grinder PlUG-iNS......cc.ocuiieeiece ettt 102
P2 L T o N I I = 10 o S 102
P2 (O L I O e . (04 R 103
2.10.11 DOCUMENLALION.ecueereeeeeeeeeseeeieseesseeeesseesseeeesseesseeeesseessesnsesseessesnsssseesees 103
2.00.12 SUPPOIT.eeeteeieisreete ettt sr e r e r e e sr e ese e n e n e e sreene e 103

Page 4

The Grinder 3

1 Project

1.1 The Grinder, a Java Load Testing Framework
1.1.1 What is The Grinder?

The Grinder isaJava' ¥ load testing framework that makesiit easy to run a distributed
test using many load injector machines. It is freely available under a BSD-style open-
source license (../license.html) .

The latest news, downloads, and mailing list archives can be found on SourceForge.net
(' https://www.sourceforge.net/projects/grinder) .

1.1.1.1 Key features

* Generic Approach Load test anything that has a Java API. This includes common
cases such as HTTP web servers, SOAP and REST web services, and application
servers (CORBA, RMI, IMS, EJBs), aswell as custom protocols.

* Flexible Scripting Test scripts are written in the powerful Jython (http://
www.jython.org/) and Clojure (http://clojure.org/) languages.

» Distributed Framework A graphical console allows multiple load injectors to be
monitored and controlled, and provides centralised script editing and distribution.

* MatureHTTP Support Automatic management of client connections and cookies.
SSL. Proxy aware. Connection throttling. Sophisticated record and replay of the
interaction between a browser and aweb site.

Seethe longer features list (../g3/features.html) for further details.

1.1.1.2 Dynamic Scripting

Test scripts are written using a dynamic scripting language, and specify the tests to run.
The default script language is Jython (http://www.jython.org/) , a Javaimplementation of
the popular Python language.

The script languages provide the following capabilities:

Test any Java code

The Grinder 3 allows any code (Java, Jython, or Clojure) code to be encapsulated as
atest. Javalibraries available for an enormous variety of systems and protocols, and
they can al be exercised using The Grinder.

Dynamic test scripting

The Grinder 2 worker processes execute tests sequentially in afixed order, and there
is limited support in some of the The Grinder 2 plug-ins for checking test results.
The Grinder 3 alows arbitrary branching and looping and makes test results directly
available to the test script, allowing different test paths to be taken depending on the
outcome of each test.

The Grinder 2 HTTP plug-in's string bean (../g2/http-plugin.html#string-bean) feature
provides simple support for requests that contain dynamic data. The Grinder 3 can use
the full power of Jython or Clojure to create dynamic requests of arbitrary complexity.

The powerful scripting removes the need to write custom plug-ins that extend The
Grinder engine. Although plug-ins are no longer responsible for performing tests,
they can still be useful to manage objects that the tests use. For example, the standard

Page 5

../license.html
https://www.sourceforge.net/projects/grinder
http://www.jython.org/
http://clojure.org/
../g3/features.html
http://www.jython.org/
../g2/http-plugin.html#string-bean

The Grinder 3

HTTP plug-in manages a pool of connections for each worker thread, and provides an
HTTPRequest object that makes use of these connections.

Kind of dry, huh? If you never seen any Python, take alook at the Script Gallery (../g3/
script-gallery.html) in the user manual where you can sample the power of The Grinder 3.

1.1.1.3 History

The Grinder was originally developed for the book Professional Java 2 Enterprise
Edition with BEA WebLogic Server by Paco Gomez and Peter Zadrozny. Philip Aston
took ownership of the code, reworked it to create The Grinder 2, and shortly after began
work on The Grinder 3. The Grinder 3 provides many new features, the most significant
of which is dynamic test scripting. Philip continues to enhance and maintain The Grinder.

In 2003, Peter, Philip and Ted Osborne published the book J2EE Performance Testing
(../links.html#book) which makes extensive use of The Grinder 2.

Support for Clojure (http://clojure.org/) as an alternative script language was introduced
in 3.6.

1.1.2 Authors

Over the years, many individuals (.././mvn-site/team-list.ntml) have contributed features,
bug fixes, and tranglations to The Grinder.

1.1.3 Credits

| thank Paco Gémez and Peter Zadrozny for the key ideas embodied in the original
version of The Grinder.

| am grateful to SourceForge, Inc. (http://www.sourceforge.com/) for The Grinder's
home on the Internet.

| thank Atlassian (http://www.atlassian.com/) for the free Clover (http://
www.atlassian.com/clover) and FishEye (http://fisheye3.cenqua.com/browse/grinder/)
licenses, and to Headway Software (http://www.headwaysoftware.com/) for the free
Structure 101 (http://www.headwaysoftware.com/products/structure101) license.

This siteis built with Apache Forrest (http://forrest.apache.org/) , and uses
SyntaxHighlighter (http://alexgorbatchev.com/SyntaxHighlighter/) .

Philip Aston

1.2 The Grinder License

The Grinder is free software. It aso repackages other free software. This section explains
what you can and cannot do with The Grinder and the software included with it.

1.2.1 The Grinder

Copyright (c) 2000 Paco Gomez
Copyright (c) 2000-2012 Philip Aston
All rights reserved.

Additional contributions have been made by individuals listed in the AUTHORS file
supplied with this distribution. Each individual's claim to copyright is asserted in the files
to which they contributed.

Page 6

../g3/script-gallery.html
../links.html#book
http://clojure.org/
.././mvn-site/team-list.html
http://www.sourceforge.com/
http://www.atlassian.com/
http://www.atlassian.com/clover
http://fisheye3.cenqua.com/browse/grinder/
http://www.headwaysoftware.com/
http://www.headwaysoftware.com/products/structure101
http://forrest.apache.org/
http://alexgorbatchev.com/SyntaxHighlighter/

The Grinder 3

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, thislist of
conditions and the following disclaimer.

» Redistributionsin binary form must reproduce the above copyright notice, thislist of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

* Neither the names of the copyright holders nor the names of the contributors may be
used to endorse or promote products derived from this software without specific prior
written permission.

THISSOFTWARE ISPROVIDED BY THE COPYRIGHT HOLDERSAND
CONTRIBUTORS"ASIS' AND ANY EXPRESSOR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESSFOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR
CONTRIBUTORSBE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

OUT OF THE USE OF THISSOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

1.2.2 HTTPClient

The Grinder includes Ronald Tschalar's HTTPClient library (http://www.innovation.ch/
java/HTTPClient/index.html (http://www.innovation.ch/java/HTTPClient/)). The
HTTPClient library is distributed under the GNU Lesser Public License 2.1 (http://
www.opensource.org/licenses/Igpl-2.1.php) . Under the term 6 of the GNU Lesser Public
License, The Grinder is a"work that uses the Library".

1.2.3 Jython

The Grinder includes the software Jython, created by Jm Hugunin, Barry Warsaw and
the Jython team (http://www.jython.org/). Thisis distributed under the terms of the
Jython and JPython software licenses (' http://www.jython.org/license.ntml) .

1.2.4 jEdit Syntax

The Grinder includes the jEdit Syntax highlighting package (http://syntax.jedit.org/). This
is distributed according to the JEdit Syntax copyright and usage statement.

1.2.5 Apache XMLBeans

The Grinder includes Apache XML Beans (http://xmlbeans.apache.org/), under the terms
of the Apache Software License Version 2.0. Seethe XMLBeans NOTICE.

Page 7

http://www.innovation.ch/java/HTTPClient/
http://www.innovation.ch/java/HTTPClient/
http://www.opensource.org/licenses/lgpl-2.1.php
http://www.jython.org/
http://www.jython.org/license.html
http://syntax.jedit.org/
http://xmlbeans.apache.org/

The Grinder 3

1.2.6 PicoContainer

The Grinder includes PicoContainer (http://picocontainer.codehaus.org/ (http://
picocontainer.org/)). Thisis distributed under the terms of the PicoContainer license.

1.2.7 ASM

The Grinder includes ASM (http://asm.objectweb.org/ (http://picocontainer.org/)). This
is distributed under the terms of the ASM license (http://asm.ow?2.org/license.html) .

1.2.8 JSR 166y

The Grinder includes components from the extral66y package. This packageisin the
public domain. See http://g.oswego.edu/dl/concurrency-interest/ (http://g.oswego.edu/dl/
concurrency-interest/) .

1.2.9 SLF4J

The Grinder includes SLF4J (http://www.slf4j.org/), under the terms of the SLF4J license
(http://www.dlf4j.org/license.ntml) .

1.2.10 Logback

The Grinder includes Logback (http://logback.qos.ch/), under the terms of the Eclipse
Public License, Version 1.0 (http://www.opensource.org/licenses/Igpl-2.1.php) .

1.2.11 Clojure

The Grinder includes Clojure (http://clojure.org/), under the terms of the Eclipse Public
License, Version 1.0 (http://www.eclipse.org/legal/epl-v10.html) .

1.2.12 Ring

The Grinder includes Ring (https://github.com/mmcgranalring), under the terms of the
Ring license (https://github.com/mmcgranalring/blob/master/LICENSE) .

1.2.13 Compojure

The Grinder includes Compojure (https://github.com/weavejester/compojure), under
the terms of the Eclipse Public License, Version 1.0 (http://www.eclipse.org/legal/epl-
v10.html) .

1.2.14 ring-middleware-format

The Grinder includes ring-middleware-format (_https://github.com/ngrunwal d/ring-
middleware-format (https://github.com/ngrunwal d/ring-middleware-format)), under
the terms of the Eclipse Public License, Version 1.0 (http://www.eclipse.org/legal/epl-
v10.html) .

1.2.15 Jetty

The Grinder includes Jetty (https.//github.com/weavejester/compojure), under the

terms of the Eclipse Public License, Version 1.0 (http://www.eclipse.org/legal/epl -
v10.html) , with the exceptions explained in the NOTICE (http://dev.eclipse.org/svnroot/
rt/org.eclipse.jetty/jetty/trunk/NOTICE.txt) file.

Page 8

http://picocontainer.org/
http://picocontainer.org/
http://asm.ow2.org/license.html
http://g.oswego.edu/dl/concurrency-interest/
http://www.slf4j.org/
http://www.slf4j.org/license.html
http://logback.qos.ch/
http://www.opensource.org/licenses/lgpl-2.1.php
http://www.opensource.org/licenses/lgpl-2.1.php
http://clojure.org/
http://www.eclipse.org/legal/epl-v10.html
http://www.eclipse.org/legal/epl-v10.html
https://github.com/mmcgrana/ring
https://github.com/mmcgrana/ring/blob/master/LICENSE
https://github.com/weavejester/compojure
http://www.eclipse.org/legal/epl-v10.html
https://github.com/ngrunwald/ring-middleware-format
https://github.com/ngrunwald/ring-middleware-format
http://www.eclipse.org/legal/epl-v10.html
https://github.com/weavejester/compojure
http://www.eclipse.org/legal/epl-v10.html
http://dev.eclipse.org/svnroot/rt/org.eclipse.jetty/jetty/trunk/NOTICE.txt

The Grinder 3

1.2.16 Clojure tools.logging

The Grinder includes Clojure tools.logging (https.//github.com/clojure/tools.logging),
under the terms of the Eclipse Public License, Version 1.0 (http://www.eclipse.org/legal/
epl-v10.html) .

1.2.17 Supporting license text

Most licenses have been referred to above by linking to external sites. A copy of the full
text of each license can be found in The Grinder distribution.

1.2.17.1 jEdit Syntax copyright and usage statement

The jEdit 2.2.1 syntax highlighting package contains code that is
Copyright 1998-1999 Sl ava Pestov, Artur Biesiadowski, Cancy Ml colm
Jonat han Revusky, Juha Lindfors and M ke Dillon.

You may use and nodify this package for any purpose. Redistributionis
permitted, in both source and binary form provided that this notice
remains intact in all source distributions of this package.

-- Slava Pestov
25 Sept enber 2000

<sp@j t.org>

1.2.17.2 XMLBeans NOTICE

== NOTICE file corresponding to section 4(d) of the Apache License, ==
== \Version 2.0, in this case for the Apache Xm Beans distribution. ==

Thi s product includes software devel oped by The Apache Software
Foundation (http://ww.apache.org/).

Portions of this software were originally based on the follow ng:
- software copyright (c) 2000-2003, BEA Systens,
<http://ww. bea. coni >.

Aside fromcontributions to the Apache XM.Beans project, this software
al so incl udes:

- one or nore source files fromthe Apache Xerces-J and Apache Axis
products, Copyright (c) 1999-2003 Apache Software Foundati on

- WBC XML Schenm docunents Copyright 2001-2003 (c) World Wde Wb
Consortium (Massachusetts Institute of Technol ogy, European
Research Consortiumfor Informatics and Mathenmatics, Keio
Uni versity)

- Piccolo XML Parser for Java fromhttp://piccol o.sourceforge. net/,
Copyright 2002 Yuval Oen under the terns of the Apache Software
Li cense 2.0

- JSR-173 Stream ng APl for XML from
http://sourceforge. net/projects/xm pul | parser/,
Copyri ght 2005 BEA under the terns of the Apache Software
Li cense 2.0

1.2.17.3 PicoContainer License

Copyright (c) 2003-2005, PicoContainer Organization
Al'l rights reserved.

Page 9

https://github.com/clojure/tools.logging
http://www.eclipse.org/legal/epl-v10.html

The Grinder 3

Redi stribution and use in source and binary forns, with or w thout
nodi fication, are permtted provided that the follow ng conditions are net:

Redi stributions of source code nust retain the above copyright notice, this
list of conditions and the follow ng disclainer.

Redi stributions in binary formnust reproduce the above copyright notice,
this list of conditions and the follow ng disclainmer in the docunentation
and/or other materials provided with the distribution.

Nei t her the nane of the PicoContainer Organization nor the names of its
contributors may be used to endorse or pronote products derived fromthis
software without specific prior witten pernission.

TH' S SOFTWARE | S PROVI DED BY THE COPYRI GHT HOLDERS AND CONTRI BUTORS "AS | S'
AND ANY EXPRESS OR | MPLI ED WARRANTI ES, | NCLUDI NG BUT NOT LIMTED TO, THE
I MPLI ED WARRANTI ES OF MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR PURPCSE
ARE DI SCLAI MED. I N NO EVENT SHALL THE COPYRI GHT OMNER OR CONTRI BUTORS BE
LI ABLE FOR ANY DI RECT, | NDI RECT, | NCI DENTAL, SPECI AL, EXEMPLARY, OR
CONSEQUENTI AL DAMAGES (| NCLUDI NG BUT NOT LIM TED TO, PROCUREMENT OF
SUBSTI TUTE GOODS OR SERVI CES; LOSS OF USE, DATA, OR PROFITS; OR BUSI NESS

| NTERRUPTI ON) HOWNEVER CAUSED AND ON ANY THEORY OF LI ABILITY, WHETHER I N
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDI NG NEGLI GENCE OR OTHERW SE)

ARI SING I N ANY WAY QUT OF THE USE OF THI S SOFTWARE, EVEN | F ADVI SED OF THE
PCSSI BI LI TY OF SUCH DAVAGE.

1.3 Downloading The Grinder

1.3.1 Download

The Grinder can be downloaded from SourceForge.net (https:.//www.sourceforge.net/
projects/grinder) . New users are advised (../fag.html#g2vsg3) to start with The Grinder
3. The source code (../devel opment/contributing.html#source) is also available.

The Grinder 3 isdistributed as two zip files which you should expand using unzi p,
WinZip (http://www.winzip.com/) or similar. Everything required to run The Grinder
isinthezipfilelabelled gri nder - version. zi p. The remaining files that are needed
to build The Grinder are distributed in the zip file labelled gr i nder - version-

Src. zi p; these are mainly of interest to developers wanting to _extend The Grinder (../
development/contributing.html) .

1.3.1.1 What else do | need?
To run The Grinder:

Java Standard Edition 6 (http://www.oracle.com/ For The Grinder 3.
technetwork/javal/javase/downl oads/index.html) ,
equivalent, or later

Java 2 Standard Edition 1.3 (http:// For The Grinder 2.
www.oracle.com/technetwork/javaljavase/
downloads/index.html) , equivalent, or later

JSSE (Java Secure Socket Extension) 1.0.2 (http:// = For SSL support with The Grinder 2.

www.oracle.com/technetwork/javaljavase/tech/ JSSE isastandard part of Java 2 Standard Edition

index-jsp-136007.html) 1.4.1 and later, so this extension is not requried for
The Grinder 3.

1.3.2 Downloading The Grinder using Maven

Some userswill find it preferable to use Maven to manage The Grinder. On release, the
jar files are deployed to the Sonatype (http://oss.sonatype.org/) OSS Nexus repository,

Page 10

https://www.sourceforge.net/projects/grinder
../faq.html#g2vsg3
../development/contributing.html#source
http://www.winzip.com/
../development/contributing.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136007.html
http://oss.sonatype.org/

The Grinder 3

and will be synchronised to Maven Central (http://search.maven.org) soon afterwards.
Y ou can choose either to depend on the the zip file, which should be identical to the
Sourceforge download, or the individua jar files.

1.4 Support

1.4.1 Mailing lists

Requests for help should be sent to grinder-use@lists.sourceforge.net (mailto:grinder-
use@lists.sourceforge.net) .

To reduce spam, you must subscribe (https://www.sour cefor ge.net/p/grinder/mailman/) to a
list before you can send email toit. The email address you send mail from must be the one you
used to subscribe.

grinder-announce@lists.sourceforge.net (mailto:grinder-announce@lists.sourceforge.net)
isalow-volume mailing list which is used to announce new releases and other items of
interest to users of The Grinder.

Please contribute bug fixes and enhancements (../development/
contributing.html) to grinder-devel opment@lists.sourceforge.net (mailto:grinder-
development@lists.sourceforge.net) .

Y ou can subscribe and unsubscribe (https.//www.sourceforge.net/p/grinder/

mailman/) to the lists, and search their archives, through SourceForge.net (https://
www.sourceforge.net/projects/grinder) . Gmane (http://gmane.org/find.php?ist=grinder)
provides alternative searchable archives, together with NNTP feeds and an optional Blog-
like interface.

When Philip Aston finds the time to respond to mail about The Grinder, messages

not copied to one of the above mail listsarelikely to beignored. Philip freely

copies responses to the lists; if there is a particular reason why you want to keep your
communication private you must say so. Finaly, if you can provide answers to questions
sent to the lists, please don't be shy!

The Grinder is free software. No one is under any obligation to fix your problem. If al elsefails,
you have the source.

1.5 External references

1.5.1 Related Software Projects

Another Groovy script engine A second Groovy script engine

(‘http://www.cubrid.org/ from the nGrinder (http://

wiki_ngrinder/entry/groovy- www.nhnopensource.org/

script) ngrinder) team.

Grinder to Graphite Grinder to Graphite (g2g) isa

(http://grinder-to- tool that analyzes the logs from

graphite.readthedocs.org/en/ your Grinder tests, and sends

|atest/) the datainto Graphite where it
can bevisualized in avariety of
ways.

Page 11

http://search.maven.org
mailto:grinder-use@lists.sourceforge.net
https://www.sourceforge.net/p/grinder/mailman/
mailto:grinder-announce@lists.sourceforge.net
../development/contributing.html
mailto:grinder-development@lists.sourceforge.net
https://www.sourceforge.net/p/grinder/mailman/
https://www.sourceforge.net/projects/grinder
http://gmane.org/find.php?list=grinder
http://www.cubrid.org/wiki_ngrinder/entry/groovy-script
http://www.nhnopensource.org/ngrinder
http://grinder-to-graphite.readthedocs.org/en/latest/

The Grinder 3

100, 0

qaperf-grinderdt M qaperf-grindero2 qaperf-grindero3
grinder-groovy (https:/ Alternative script engine for The
github.com/Dea erDotCom/ Grinder: write your test scriptsin
grinder-groovy) Groovy.
Grinder maven plugin (http:// A Maven Plugin for The
code.google.com/p/grinder- Grinder, with Grinder Analyzer
maven-plugin) integration. The plugin allows

you to run The Grinder from a
Maven build, and analyse the

results.
nGrinder (http:// A web based testing framework
www.nhnopensource.org/ built on top of The Grinder. The
ngrinder) demo video is particularly dlick.
Grinder Webtest (http:// This custom module allows
www.automation- execution of Visual Studio
excellence.com/software/grinder- webtest files. It supports
webtest) parameterization, capturing of

variablesin HTTP responses,
and response validation using
regular expressions. Test scripts
may be logically grouped into
test sets, allowing them to share
variables and captured values.
Test sets can be run sequentially,
randomly, in a specific thread,
or according to a percentage-

Page 12

https://github.com/DealerDotCom/grinder-groovy
http://code.google.com/p/grinder-maven-plugin
http://www.nhnopensource.org/ngrinder
http://www.automation-excellence.com/software/grinder-webtest

HTTP Quality Assurance Toolkit
(http://http-gat.sf.net)

The Grinder Agent Installer
(http://clinker.klicap.es/projects/
demeter)

Grinder In The Cloud (http://
devel oper.amazonwebservices.con
connect/entry.jspa?

external | D=2055& category| D=101

Grinder Plugin for Hudson

(' http://hudson.gotdns.com/
wiki/display/HUDSON/Grinder
+Plugin)

The Grinder 3

based weighting. A correlating
test runner is also provided,
making it easier for you to find
and capture valuesin your HTTP
responses. We have successfully
used this module to run load tests
of more than 300 virtual users,
with a scenario involving 21
different webtest scripts recorded
in Fiddler.

HTTP functional and
non-functional (load and
performance) toolkit based

on jython/grinder (http://
grinder.sf.net) ...includes
capabilities to support: SOA
services, REST, json/xml
encoding, AES and WS
security ... and a stub to collect
requests.

The Grinder Agent Installer is
useful when you want to execute
load testsin a heterogeneous
context, and to simulate real
users accessing the target
application through afirewall,
3G, VPN, direct (router) and
from different locales, where
you haven't accessto al this
computers for run the agent.

It provides an installer any user
can install and execute with only
click next and provisioning some
datain a graphic environment.
You only haveto wait the
connectionsin the console.

Grinder in the Cloud leverages
the well known Grinder load

test framework by putting it in
the cloud. It offers an easy to

use load test framework with
virtually unlimited firepower at a
competitive price. This Windows
based AMI starts the Grinder
console. It starts Grinder agent
AMIsto generate the load. The
Agents automatically connect

to the console. Built by Jorg
Kalshach.

This plug-in reads output result
files from performance tests
run with The Grinder, and will
generate reports showing test
results for every build and trend

Page 13

http://http-qat.sf.net
http://clinker.klicap.es/projects/demeter
http://developer.amazonwebservices.com/connect/entry.jspa?externalID=2055&categoryID=101
http://hudson.gotdns.com/wiki/display/HUDSON/Grinder+Plugin

Ground Report (http://
ground.sourceforge.net)

Grinder Analyzer (http://
track.sourceforge.net/)

webFlange (http://
webflange.sourceforge.net/)

GrinderStone (http://
code.google.com/p/grinderstone/)

Traresacrons ger sscond
- oM oW & oW owm wm

(]
Le§
Lar

Haspo=se Dima
B R W e
=R

The Grinder 3

reports showing performance
results across builds.

The Ground Report isa
collection of reporting utilities
specific to The Grinder test tool.
The tools consist of areporting
database and graphing & report
utilities based upon jyplot,
jFreechart and DocBook written
in Jython.

Grinder Analyzer isatool

that parses log data from The
Grinder and generates client-
side performance graphs. These
graphsinclude response time,
transactions per second, and
network bandwidth used. Like
The Grinder itself, Grinder
Analyzer uses Jython, and the
excellent JFreechart graphing

Empsed dme, seconds

psaEd fyiieg — seopndy

webFlange is a continuous load
testing web application written
in Java. It leverages The Grinder
for running tests, automatically
creates reports and allows the
creation of charts from the test
results.

GrinderStone is an Eclipse plug-
in for Grinder load testing scripts
development (debugger for
scriptsisincluded).

Page 14

library.
All Transactions
Perlormanice
I
] J ‘l a b
i Wil batrcipi] Pl
1 % e
|__..-|I'l'|"-"""'"l
e
e o
1,000 LS00 1)00d 2 50 1000 L] & DOl L]

http://ground.sourceforge.net
http://track.sourceforge.net/
http://webflange.sourceforge.net/
http://code.google.com/p/grinderstone/

1.5.2 Articles

The Adile Grind (http://agilegrind.blogspot.co.uk/)

Black Anvil: Visualizing Grinder Data

With Other External Metrics (http:/
blackanvil .blogspot.com/2011/12/integrating-
grinder-performance-data.html)

Rough Book (http://vivin.net/tag/the-grinder/)

PerformanceEngineer.com: Introduction To The
Grinder (' http://www.performanceengineer.com/
blog/introduction-to-the-grinder/)

PC Pro article (http://www.pcpro.co.uk/
features/230550/technol ogy-you-can-bet-on/
page3.html)

InfoQ News (http://www.infog.com/
news/2008/02/the-grinder-3)

Pure Danger Tech: The Grinder 3.0 Released
(http://tech.puredanger.com/2008/01/25/the-
grinder-30-rel eased/)

The Black Anvil: Shootout: L oad Runner

vs The Grinder vs Apache JMeter (http://
blackanvil.blogspot.com/2006/06/shootout-| oad-
runner-vs-grinder-vs.htmi#inks)

Performance Testing using The Grinder (http://
cdjdn.com/downl oads/performancetesting-
grinder.pdf)

The Grinder 3

Gary Mulder's blog on using The Grinder.

Using Graphite to visualise the test results.

A series of in-depth blog entries that introduce The
Grinder and present arich framework for scripts.

An introductory blog entry showing how to
set up The Grinder with GrinderStone (http://
code.google.com/p/grinderstone/) .

"Technology you can bet on" - Paddy Power uses
The Grinder.

Alexander Olaru interviews Philip Aston for InfoQ.

Alex Miller says some very nice things about The
Grinder.

"... wasreally pleasantly surprised by everything
that | found. The Grinder has a fairly clean
aesthetic that is hard to quantify but makes
getting started a pleasant experience. What |
found the most enjoyable about it was the use of
Jython to script the actual test activity.
..Itistrivial to start up the console and your
agents, then have very fast modify / run cycles

as nothing needs to be restarted. You just modify
the test in your editor and hit play on the console.
This allows you to very rapidly whip your test into
shape. Kind of reminds me of Rails..."

Detailed comparison of The Grinder, IMeter, and
Load Runner from Travis Bear.

"...I recommended The Grinder asthe tool to

go forward with. It has a simple, clean Ul that
clearly shows what is going on without trying

to do too much, and offers great power and
simplicity with its unique Jython-based scripting
approach. Jython allows complex scripts to

be devel oped much more rapidly than in more
formal languages like Java, yet it can access any
Java library or class easily, allowing usto re-use
elements of our existing work."

Travis has since assisted with the implementation
of slow socket support for The Grinder.

A high-level overview of test methodology using
The Grinder from Paul Evans/Blue Slate Solutions.
Hosted by the Capital District Java Developers
Network.

Page 15

http://agilegrind.blogspot.co.uk/
http://blackanvil.blogspot.com/2011/12/integrating-grinder-performance-data.html
http://blackanvil.blogspot.com/2011/12/integrating-grinder-performance-data.html
http://vivin.net/tag/the-grinder/
http://www.performanceengineer.com/blog/introduction-to-the-grinder/
http://www.performanceengineer.com/blog/introduction-to-the-grinder/
http://code.google.com/p/grinderstone/
http://www.pcpro.co.uk/features/230550/technology-you-can-bet-on/page3.html
http://www.infoq.com/news/2008/02/the-grinder-3
http://tech.puredanger.com/2008/01/25/the-grinder-30-released/
http://blackanvil.blogspot.com/2006/06/shootout-load-runner-vs-grinder-vs.html#links
http://blackanvil.blogspot.com/2006/06/shootout-load-runner-vs-grinder-vs.html#links
http://cdjdn.com/downloads/performancetesting-grinder.pdf

The Grinder 3

Grinder Test Automation for the Webl ogic An custom automated test environment for
Server (http://www.anser-e.com/testing/ WebL ogic built on The Grinder.
GrinderAutomationT utorial.html)

Gash: Load Testing Java Applications (http:// Replacing IMeter with The Grinder 3

. iting/blog-grinder.ph
gashalot.comfwriting/blog-grinder.php) "I went from a freshly downloaded tarball to fully

functional test environment in about 2.5 hours.
That's powerful."

WikiWikiWeb (http://c2.com/cgi/wiki/wiki? Entry on the Wiki of Wiki's.
TheGrinder)

Stress Testing with The Grinder and Cactus (http:// = Using The Grinder 2's JUnit plug-in with Cactus.
www.abcseo.com/papers/grinder.htm)

The Grinder: Load Testing for Everyone (http:// An introductory article on The Grinder 2 from Phil

dev2dev.bea.com/articles/aston.jsp) Aston.

Anticlue (http://www.anticlue.net/ Blog entry on The Grinder 3.
archives/000395.htm)

L oad Testing Web Services with Grinder (http:// An article on testing Web Services with The
www.oreillynet.com/pub/wlg/6743) Grinder 3.

Massive Propeller: The Grinder (http:/ Blog entry on The Grinder 2.
www.massivepropel ler.com/users/austin/blogs/

whatsnew/archive/000043.html)

Mr Worm's GonePage: The Grinder Blog entry on The Grinder.

(http://82.133.140.67/MrWorm/35)

Dan Moore!: The Grinder (http:// Blog entry on The Grinder 3.
www.mooreds.com/webl og/archives/000111.html)

1.5.3 Commercials

This section contains links to commercial products and services related to The Grinder.
Y ou should not assume any relationship other than those documented below between
the listed individuals and companies and The Grinder project. If you have a product or
service related to The Grinder and would like to add information to this page, please
email details to grinder-use (mailto:grinder-use@lists.sourceforge.net) .

1.5.3.1 Synoty

Performance has become a critical part of product development these days. The need
for speed is here, users expect faster and responsive applications. At Synoty we realized
a consolidated performance service which enables our customers to provide great
applicationsto their usersis needed.

Synoty is an application performance consulting service with a difference. Our service
provides our customers with cloud based or inside firewall load and performance testing,
user experience testing and performance engineering such as application code, database
and operating system performance analysis and tuning.

We also included tools and software needed for performance analysis and an amazing
performance portal to bring it al in one place. The Grinder is our load generator in the
cloud.

Page 16

http://www.anser-e.com/testing/GrinderAutomationTutorial.html
http://www.anser-e.com/testing/GrinderAutomationTutorial.html
http://gashalot.com/writing/blog-grinder.php
http://c2.com/cgi/wiki/wiki?TheGrinder
http://www.abcseo.com/papers/grinder.htm
http://dev2dev.bea.com/articles/aston.jsp
http://www.anticlue.net/archives/000395.htm
http://www.oreillynet.com/pub/wlg/6743
http://www.massivepropeller.com/users/austin/blogs/whatsnew/archive/000043.html
http://82.133.140.67/MrWorm/35
http://www.mooreds.com/weblog/archives/000111.html
mailto:grinder-use@lists.sourceforge.net

The Grinder 3

To learn how we can help you with performance please visit us at www.synoty.com
(' http://www.synoty.com) .

1.5.3.2 Perfmetrix

Perfmetrix isaglobal group of highly skilled and experienced system architects and
performance experts ready to assist you with a comprehensive range of servicesto create
or improve software applications that meet or exceed your business needs. We have
presence in the United States, Europe, the Middle East, Africaand Latin America.

Perfmetrix isled by Peter Zadrozny, who was the Chief Technologist of BEA Systems
for Europe, Middle East and Africa, arole he had since he started the operations of
WebL ogic in Europe (prior to the BEA acquisition).

Peter is the author of J2EE Performance Testing (../links.html#book) (Expert

Press, 2002), coauthor of "Professional J2EE Programming with BEA WebL ogic
Server" (WroxPress, 2000) and "Beginning EJB 3 Application Development™ (Apress
2006). He is the founding editor of the WebL ogic Developer's Journal, and a frequent
speaker on technology issues around the world. Peter was aso part of the team that
created The Grinder.

Peter Zadrozny, Perfmetrix (http://www.perfmetrix.com)

1.5.3.3 Anser Enterprise

One of my consulting servicesis helping performance analysts to set up company-
internal blogs on their performance activities to help them communicate better with their
developers and management. As part of my consulting service | can offer usage and
customization tips on The Grinder and a separate data visualization tool to show Grinder
test results on their company's intranet. Much of thisisin the area of test automation and
mining test results.

Here'salink (http://www.anser-e.com/runé/Run6a.html) which provides several
example web pages on communicating WebL ogic 8.1/Grinder testing results. It requires
downloading the Java 1.5 plug-in for charting Grinder test results.

Todd Nichols, Anser Enterprise (http://www.anser-e.com/)

1.5.3.4 TestPros

TestPros provides load testing and performance tuning services using Grinder. We can
provide our servicesin one or a combination of three ways - remotely via our Internet
server farm, at our test labs, or a our customer's location.

For more information:
 1-877-783-7855

* info@TestPros.com (mailto:info@T estPros.com)
o www.TestPros.com (http://www.TestPros.com/)

1.5.3.5 swtest-discuss

| runamailing list for software testers called swiest-discuss (http://lists.topica.com/
lists/swtest-discussy) . There are afew people there (including me) who are interested
in talking about how people do testing for open source projects. | haven't yet found a
community of open source testers that cuts across multiple tool s/applications.

Page 17

http://www.synoty.com
../links.html#book
http://www.perfmetrix.com
http://www.anser-e.com/run6/Run6a.html
http://www.anser-e.com/
mailto:info@TestPros.com
http://www.TestPros.com/
http://lists.topica.com/lists/swtest-discuss/

The Grinder 3

If you're interested in sharing your experiences in testing open source software, please
consider joining swtest-discuss, at least long enough to seeif there's any interest in having
an on-going forum on this topic. If you do subscribe, please either send me a private
email or introduce yourself to the list so we know you're there.

Danny R. Faught, Tejas Software Consulting (http://tejasconsulting.com/)

1.5.3.6 J2EE Performance Testing

I'm pleased to announce the availability of J2EE Performance Testing with BEA
WebLogic Server (' http://www.amazon.convexec/obidos/tg/detail/-/159059181X/
Qid=1064753861/sr=1-1/ref=sr_1 1/002-5481898-2224815) by Peter Zadrozny, Philip
Aston and Ted Osborne, originally published by Expert Press and now by APress.

JZEE Parformancs Tessing
vn B b g St

This book uses The Grinder 2 throughout, and indeed was responsible for driving the
development of many of The Grinder's features. The book shows how to performance test
complete J2EE applications and how to explore key performance issues surrounding the
most popular J2EE APIs. The performance tests are carried out using BEA WebL ogic
Server™, but are generally applicable to any J2EE application server.

Most importantly, the book contains in-depth coverage of The Grinder 2 including afull
user guide and case studies showing how to apply The Grinder to real world problems.
The testing approach is equally applicable when using The Grinder 3.

Following severa requests, I've made the source code for the book available from The
Grinder SourceForge page (https.//www.sourceforge.net/projects/grinder) . This source is
supplied unsupported and with no warranty.

Philip Aston

2 The Grinder 3

2.1 Getting started

This section takes atop down approach to The Grinder. If you are happy figuring things out for
yourself and want to get your hands dirty, you might like to read How do | start The Grinder?

and then jump to the Script Gallery (../g3/script-gallery.html) .

2.1.1 The Grinder processes

The Grinder is aframework for running test scripts across a number of machines. The
framework is comprised of three types of process (or program): worker processes
(../g3/agents-and-wor ker s.html#wor ker -processes) , agent processes (../g3/agents-

Page 18

http://tejasconsulting.com/
http://www.amazon.com/exec/obidos/tg/detail/-/159059181X/qid=1064753861/sr=1-1/ref=sr_1_1/002-5481898-2224815
http://www.amazon.com/exec/obidos/tg/detail/-/159059181X/qid=1064753861/sr=1-1/ref=sr_1_1/002-5481898-2224815
https://www.sourceforge.net/projects/grinder
https://www.sourceforge.net/projects/grinder
../g3/script-gallery.html
../g3/agents-and-workers.html#worker-processes
../g3/agents-and-workers.html#agent-processes

The Grinder 3

and-wor ker s.html#agent-processes) , and the console (../g2/console.html) . The
responsibilities of each of the process types are:

* Worker processes
* Interpretstest scripts and performs the tests.
Each worker process can run many testsin parallel using a number of worker
threads.
e Agent processes
» Long running process that starts and stops worker processes as required.
» Maintainsalocal cache of test scripts distributed from the console.
+ TheConsole
» Coordinates the other processes.
» Collates and displays statistics.
» Provides script editing and distribution.

As The Grinder iswritten in Java, each of these processesis a Java Virtual Machine
(IVM).

Page 19

../g2/console.html

The Grinder 3

Commands,
Scripts

/ Stitlﬁ‘A
\

Load Injecti

N\ /S

System under Test

For heavy duty testing, you start an agent process on each of several load injector
machines. The worker processes they launch can be controlled and monitored using the
console. Thereislittle reason to run more than one agent on each load injector, but you
can if you wish.

2.1.2 Tests and test scripts

A test isaunit of work against which statistics are recorded. Tests are uniquely defined

by atest number and also have a description. Users specify which tests to run using a test
script (../g3/scripts.html) . If you wish your scripts can report many different actions (e.g.
different web page requests) against the same test, The Grinder will aggregate the results.

Page 20

../g3/scripts.html
../g3/scripts.html

The Grinder 3

The script is executed many timesin atypical testing scenario. Each worker process has
anumber of worker threads, and each worker thread calls the script a number of times. A
single execution of atest script iscalled arun.

Y ou can write scripts for use with the Grinder by hand. There are a number of examples
of how to do thisin the Script Gallery (../g3/script-gallery.html) . See the Scripts (../g3/
scripts.html) section for more details on how to create scripts.

If you are creating a script to test aweb site or web application, you can use the
TCPProxy (../g3/tcpproxy.html#HTTPPluginT CPProxyFilter) to record a browser
session as a script.

2.1.3 Network communication

Each worker process sets up a network connection to the console to report statistics.
Each agent process sets up a connection to the consol e to receive commands, which it
passes on to its worker processes. The console listens for both types of connection on
aparticular address and port. By default, the console listens on port 6372 on all local
network interfaces of the machine running the console.

If an agent process fails to connect to the console, or thegr i nder . useConsol e
property isf al se, the agent will continue independently without the console and
automatically will start its worker processes. The worker processes will run to completion
and not report to the console. This can be useful when you want to quickly try out a test
script without bothering to start the console.

To change the console addresses, set thegr i nder . consol eHost and

grinder. consol ePort propertiesinthegri nder. properti es (../g3/properties.html)
file before starting The Grinder agents. The values should match those specified in the console
options dialog.

2.1.4 Output

Each worker process writes logging information to afile called host - n. | og, where
host isthe machine host name and n isthe worker process number.

Data about individual test invocations iswritten into afile called host - n- dat a. | og

that can be imported into a spreadsheet tool such as Microsoft Excel ™™ for further
analysis. The datafileisthe only place where information about individual testsis
recorded; the console displays only aggregate information.

The final statistics summary (in the log file of each process) looks something like this:

Final statistics for this process:

Successf ul
Tests Errors Mean Test Test Tinme
Time (ns) St andard
Devi ati on
(ns)
Test O 25 0 255,52 22.52
Test 1 25 0 213. 40 25.15
Test 2 25 0 156. 80 20.81 "I mage"
Test 3 25 0 90. 48 14. 41
Test 4 25 0 228. 68 23.97 "Logi n page"
Test 5 25 0 86. 12 12.53 "Security check"
Test 6 25 0 216. 20 8. 89

Page 21

../g3/script-gallery.html
../g3/scripts.html
../g3/tcpproxy.html#HTTPPluginTCPProxyFilter
../g3/tcpproxy.html#HTTPPluginTCPProxyFilter
../g3/properties.html

The Grinder 3

Test 7 25 0 73.20 12.83
Test 8 25 0 141. 92 18. 36
Test 9 25 0 104. 68 19. 86 "Logout page"
Total s 250 0 156. 70 23.32

The console has a dynamic display of similar information collected from al the worker
processes. Plug-ins and advanced test scripts can provide additional statistics; for
example, the HTTP plug-in adds a statistic for the content length of the response body.

Each test has one of two possible outcomes:

1. Success. The number of Successful Tests for that test isincremented The time taken to
perform the test is added to the Total.

2. Error. The execution of atest raised an exception. The number of Errorsfor thetest is
incremented. The time taken is discarded.

The Total, Mean, and Standard Deviation figures are cal culated based only on successful
tests.

2.1.5 How do | start The Grinder?

It's easy:

1. Createagri nder. properties (../g3/properties.html) file. Thisfile specifies
general control information (how the worker processes should contact the console,
how many worker processesto use, ..), as well as the name of the test script that will
be used to run the tests.

2. Set your CLASSPATHto includethegri nder . j ar filewhich can be found in the
[i b directory.

3. Start the console (../g2/console.html) on one of the test machines:

java net.grinder. Consol e

4. For each test machine, do steps 1. and 2. and start an agent process:

java net.grinder.Ginder

The agent will look for thegr i nder . properti es fileinthelocal directory. The
test script is usually stored alongside the propertiesfile. If you like, you can specify
an explicit properties file as the first argument. For example:

java net.grinder.Ginder nyproperties

The console does not read the gr i nder . properti es file It hasits own options
dialog (choose the File/Options menu option) which you should use to set the
communication addresses and ports to match thoseinthegr i nder . properti es files.
The console process controls (../g3/console.ntml#process-controls) can be used to trigger
The Grinder test scenario. Each agent process then creates child worker processesto do
the work.

When you know a little more about the console, you can use it to edit and distribute properties

files and scripts (../g3/console.html#Script+tab) instead of copying them to each agent machine.

Page 22

../g3/properties.html
../g2/console.html
../g3/console.html#process-controls
../g3/console.html#Script+tab
../g3/console.html#Script+tab

The Grinder 3

Asthe worker processes execute, they dynamically inform the console of the testsin the
test script. If you start the console after the agent process, you should press the Reset
processes button. Thiswill cause the existing worker processes to exit and the agent
process to start fresh worker processes which will update the console with the new test
information.

Included below are some sampl e scripts, for both Unix/Linux and Windows, for starting
grinder agents, the console, and the TCPProxy (../g3/tcpproxy.html) for recording HTTP
scripts.

Windows

setGrinderEnv.cmd

set GRI NDERPATH=(full path to grinder installation directory)

set GRI NDERPROPERTI ES=(full path to grinder.properties)\grinder.properties
set CLASSPATH=%GRI NDERPATH | i b\ gri nder . j ar ; %CLASSPATHY%

set JAVA HOVE=(full path to java installation directory)

PATH=%J AVA_HOVE% bi n; %°ATH%

startAgent.cmd

call (path to setGinderEnv.cnd)\setGinderEnv.cnd

echo YCLASSPATHY%

java -cl asspath %UCLASSPATHY net . gri nder. Gri nder %3RlI NDERPROPERTI ES%
startConsole.cmd

call (path to setGinderEnv.cnd)\setGinderEnv.cnd

java -cl asspath %UCLASSPATHY% net. gri nder. Consol e
startProxy.cmd

call (path to setGinderEnv.cnd)\setGinderEnv.cnd
java -cl asspath %UCLASSPATHY net . gri nder. TCPProxy -console -http > grinder. py

Unix

setGrinderEnv.sh

#! [usr/ bi n/ ksh

GRI NDERPATH=(full path to grinder installation directory)

GRI NDERPROPERTI ES=(full path to grinder.properties)/grinder.properties
CLASSPATH=$GRI NDERPATH/ | i b/ gri nder . j ar: $CLASSPATH

JAVA HOVE=(full path to java installation directory)

PATH=$JAVA_HOME/ bi n: $PATH

export CLASSPATH PATH GRI NDERPROPERTI ES

startAgent.sh

#! [usr/ bi n/ ksh
(path to setGinderEnv.sh)/setGinderEnv. sh
java -classpath $CLASSPATH net. gri nder. Gri nder $GRI NDERPROPERTI ES

startConsole.sh

#! [usr/ bi n/ ksh
(path to setGinderEnv.sh)/setGinderEnv. sh
java -classpath $CLASSPATH net. gri nder. Consol e

startProxy.sh

#! [usr/ bi n/ ksh
(path to setGinderEnv.sh)/setGinderEnv. sh

Page 23

../g3/tcpproxy.html

The Grinder 3

java -cl asspath $CLASSPATH net.grinder. TCPProxy -console -http > grinder. py

2.2 Agents and Workers

2.2.1 Agents and Workers

Refer to The Grinder processes (../g3/getting-started.html#The+Grinder+processes) for
an overview of the various processes. This page provides some further details.

2.2.1.1 Agent processes

It istypical to run asingle agent process on each load injector machine.

When an agent is started, it attempts to connect to the console (../g2/console.html) . If it
can connect, it will wait for asignal from the console before starting worker processes.
Otherwise, the agent process will start a number of worker processes as specified by its
local grinder.properties (../g3/properties.html) file.

If the network connection between the agent and the console is terminated, or the console
exits, the agent will exit. If you want the agent to keep running and try regularly to
reconnect to the console, use the - daenon command line switch. This might prove
useful if you register an agent as an operating system service.

Summary of agent process options

Most agent options are controlled by the grinder.properties (../g3/properties.html) file.
Y ou can set properties on the command line (../g3/properties.ntml#Specifying+properties
+on+thetcommand+line) .

-daenon [reconnect tine] If this option is specified on the agent command
line, and the connection to the console cannot be
established or the connection islost, the agent will
sleep for awhile and then attempt to connect to the
console again. The default sleep time is 60 seconds,
but this can be controlled by providing areconnect
time in seconds.

2.2.1.2 Worker processes
Worker processes are started by a controlling agent process. The agent process passes
each worker a set of properties (../g3/properties.html) that control its behaviour.

2.2.2 The Grinder 3 Properties File

The Grinder worker and agent processes are controlled by setting propertiesin the
grinder. properti es file.

All properties have default values. If you start The Grinder agent process without a
grinder. properti es fileit will communicate with the console using default
addresses, use one worker process, one thread, and make one run through the test script
found inthefilegri nder . py. Thisis not much use, so read on...

2.2.2.1 Table of properties

This table lists the properties understood by The Grinder engine.

Page 24

../g3/getting-started.html#The+Grinder+processes
../g2/console.html
../g3/properties.html
../g3/properties.html
../g3/properties.html#Specifying+properties+on+the+command+line
../g3/properties.html

grinder. processes

gri nder .t hreads

grinder.runs

gri nder. processl ncr ement

grinder. processl ncrement

grinder.initial Processes

gri nder. duration

gri nder. script

grinder.jvm

grinder.jvmcl asspath

The Grinder 3

The number of worker processes 1
the agent should start.

The number of worker threads 1
that each worker process spawns.

(B

The number of runs of the test
script each thread performs. 0
means "run forever", and should
be used when you are using the
console to control your test runs.

If set, the agent will ramp Start all worker processes
up the number of worker together.

processes, starting the

number specified every

gri nder. processesl ncrem

milliseconds. The upper limitis

set by gri nder . processes.

Used in conjunction with 60000 ms
grinder. processl ncrenent

this property setstheinterval in

milliseconds at which the agent

starts new worker processes.

Used in conjunction with The value of
gri nder. processl ncrenent gri nder. processl ncrenent .
this property setstheinitial
number of worker processesto
start.

The maximum length of time Run forever.
in milliseconds that each

worker process should run for.

grinder. duration canbe

specified in conjunction with

grinder. runs,inwhich

case the worker processes will

terminate if either the duration

time or the number of runsis

exceeded.

The file name of the Jython script = grinder.py
(../g3/scripts.html) to run.

Use an dternate VM for worker java
processes. Defaultsto j ava so

you do not need to specify thisif

your PATH s sensible.

Use to adjust the classpath used
for the worker process JVMs.
Anything specified here will be
prepended to the classpath used
to start the Grinder processes.

Relative paths are evaluated
based on the worker process
working directory (../g3/

Page 25

../g3/scripts.html
../g3/scripts.html#cwd

nder.jvm argument s

gri

nder.logDirectory

gri

nder. host| D

gri

nder . consol eHost

gri

nder. consol ePor t

gri

nder . useConsol e

gri

nder . report ToConsol e.

gri

grinder.initialSleepTim

grinder. sl eepTi meFact or

grinder. sl eepTi meVari at i

The Grinder 3

scripts.html#cwd) . Scripts
distributed using the console
can refer to librariesin the
distribution directory by using
relative paths in this property.

Additional arguments to worker
process JVMs.

Directory to write log filesto.
Created if it doesn't already exist.

Thelocal directory.

Override the "host" string used in |~ The host name.

log filenames and logs.

All the network interfaces of the
local machine.

The IP address or host name that
the agent and worker processes
use to contact the console.

The IP port that the agent and 6372
worker processes use to contact

the console.

Settof al se tosettheagent and ' true
worker processes not to use the

console.

For advanced use only. The 500 ms
period at which each process

sends updates to the console.

The maximum timein Oms
milliseconds that each thread
waits before starting. Unlike

the sleep times specified in

scripts, thisis varied according

to aflat random distribution.

The actual sleep time will be
arandom value between 0 and

the specified value. Affected by
gri nder. sl eepTi neFact or,
but not

grinder. sl eepTi meVari at i

Apply afactor to all the sleep
times you've specified, either
through a property of in ascript.
Setting thisto 0. 1 would run the
script ten times as fast.

The Grinder varies the sleep 0.2
times specified in scripts

according to aNormal

distribution. This property

specifies afractional range

within which nearly all (99.75%)

of thetimeswill lie. E.g., if the

sleep time is specified as 1000

and the sleepTimeVariation

issetto 0. 1, then 99.75%

Page 26

gri nder.report Ti mesToCol

gri nder . debug. si ngl epr o¢

gri nder . debug. si ngl epr o«

The Grinder 3

of the actual sleep timeswill
be between 900 and 1100
milliseconds.

Settof al se todisable
reporting of timing information
(././fag.html#timing) to the
console; other statistics are till
reported.

true

If settot r ue, the agent process false
spawns engines in threads rather
than processes, using special
class|loadersto isolate the
engines. This alows the engine
to be easily run in adebugger.
Thisisprimarily atool for
debugging The Grinder engine,
but it might also be useful to
advanced users. GrinderStone

(http://code.google.com/p/
grinderstone/) uses this property
to allow interactive debugging.

If you want instrumentation

to work, you must specify

-j avaagent : pat h/
grinder-dcr-agent -

ver si on. j ar onthe command
line. Here, path isthe full path

to the agent jar file that can be
found inthel i b directory, and
version depends on the version of
The Grinder.

For advanced use only.
Specifies acomma separated
list of names of classes that
should be shared between

the worker engines when

gri nder . debug. si ngl epr o«
ist r ue. Class names can end
with a* wildcard. See bug 134
(https://www.sourceforge.net/
p/grinder/bugs/134) for more
details.

2.2.2.2 Specifying properties on the command line

Y ou can also specify these properties as Java system properties in the agent command
line. For example, on UNIX systems the following command line can be used to generate
log directories based on the current date.

java -Dgrinder.|ogDirectory="1og/ $(date +%%?d)" net.grinder.Ginder

Page 27

.././faq.html#timing
http://code.google.com/p/grinderstone/
https://www.sourceforge.net/p/grinder/bugs/134

The Grinder 3

Property values set as Java system properties override values set in the
grinder. properti es file. Only properties with names that start "gr i nder . " are
considered.

2.2.3 Logging

2.2.3.1 Introduction

The Grinder 3.7 replaced a previous custom logging framework with Logback

(' http://logback.qos.ch/) . Scripts now use a standard logging APl (SLF4J (http://
www.slf4j.org/)), and Logback can be configured to alter the output format, manage
archiving of log files, and direct log streams to alternative locations.

2.2.3.2 Changing the Logback configuration

The Grinder uses two Logback configuration files:

* | ogback. xm - Used by all processes. Logsto theterminal (st dout , st derr).
* | ogback-wor ker. xm - Used by worker processes. Configures logging to the log
fileand the datalog file.

Both configuration filesare located inthe gr i nder - cor e. j ar file. Refer to the
L ogback manual (http://logback.gos.ch/manual/index.html) for full details of the
configuration file settings.

Let's change the archive settings for the output log to keep more than one archivefile.
First, extract the configuration file.

cd lib
jar xf grinder-core-3.7.jar |ogback-worker.xmn

Openthel ogback-wor ker . xm filein atext editor and locatethel og-fil e
appender. To keep five archive files, smply change the max| ndex setting to5 so it
matches the following:

<appender nane="|og-file"
cl ass="ch. gos. | ogback. core.rol |l i ng. Rol | i ngFi | eAppender ">
<file>${PREFI X} .l og</file>

<encoder >
<pattern>%l % 5| evel % ogger {0} %rarker: %ressage%n</pattern>
</ encoder >

<rol lingPolicy class="ch. gos. | ogback. core.rolling.Fi xedW ndowRol | i ngPol i cy">
<fil eNanePat t er n>${ PREFI X} . | 0g% </ fi | eNamePat t er n>
<m nl ndex>1</ m nl ndex>
<max| ndex>5</ max| ndex>

</rollingPolicy>

<triggeringPolicy class="net.grinder.util.logback.RollOnStartUp" />

</ appender >

Save the file under the same name (I ogback- wor ker . xnl). To use the modified
configuration, add the file's directory to the CLASSPATH used to start The Grinder.
We extracted the fileinto thel i b directory, so we could start the agent process with
something like the following:

Page 28

http://logback.qos.ch/
http://www.slf4j.org/
http://logback.qos.ch/manual/index.html

The Grinder 3

cd $CRI NDER_HOVE
java -classpath lib:lib/grinder.jar net.grinder.Ginder

2.2.3.3 Logging data to a database

Thel ogback-wor ker . xn file configures two Logback loggers. wor ker for the
main log file, and dat a for the datalog file. Let's change the configuration to send
test data to a database. To do this, we'll configure a new appender and add it to the
data logger. Logback's database appender supports several databases; here's a suitable
configuration for an Oracle database.

<appender nane="dat a-db" cl ass="ch. qos. | ogback. cl assi c. db. DBAppender " >
<connecti onSource cl ass="ch. qos. | ogback. core. db. Dri ver Manager Connect i onSour ce" >
<driverd ass>oracl e.jdbc. Oracl eDriver</driverC ass>
<url >j dbc: oracl e:thi n: @ocal host: 1521: XE</ ur| >
<user >gri nder </ user >
<passwor d>gri nder </ passwor d>
</ connecti onSour ce>
</ appender >

<l ogger nane="data" additivity="fal se">
<appender-ref ref="data-file" />
<appender-ref ref="data-db" />

</l ogger >

To expose any problems with the configuration, we'll also enable the Logback debug
output by changing the first line of the configuration.

<configuration debug="true">

Before we can use the database appender, we need to set up the appropriate database
tables. To do this, create a suitable database account (the configuration above uses an
account called grinder), download the Logback distribution, and locate and execute the
appropriate DDL (I ogback- cl assi ¢/ src/ mai n/j aval/ ch/ gos/ | ogback/
cl assi c/ db/ di al ect/ oracl e. sql for Oracle).

To run the configuration, add the directory containing | ogback- wor ker . xni to the
CLASSPATH, along with the appropriate database driver. For example:

java -classpath /usr/lib/oracl e/ xel app/ or acl e/ product/ 10. 2. 0/ server/jdbc/li b/
ojdbcl4.jar:lib:lib/grinder.jar net.grinder.Ginder

2.2.3.4 Writing a custom appender for data logs

If you tried out the database configuration in the previous section you may have noted the
following drawbacks.

* It'snot particularly fast. Maximum logging throughput is of the order of a hundred log
events per second, and this severely constrains the rate at which aworker process can
perform tests.

* Thelogdataiswritten asastringtoasinglef or mat t ed_nessage column. Thisis
not amenabl e to further processing.

To address these problems, you will have to write a custom database appender, perhaps
by modifying the standard L ogback-supplied appender. If you write such an appender,

Page 29

The Grinder 3

please consider making it generic and contributing it back to The Grinder. The following
sections contain some implementation ideas.

Improving database logging performance

The most beneficial change from a performance perspective would be to buffer the log
events, and write many events to the database at once. JDBC batching would further
improve performance. | suspect that this change alone would allow tens of thousands of
events to be logged per second.

The standard appender includes caller data (filename, class, method, line) that is
expensive to obtain and is of little use for The Grinder data log. It also logs exception and
property information. These features can be removed.

To support the secondary exception and property tables, the standard appender needs to
obtain the primary key of the newly logged event. Unfortunately this uses an appender
level lock (unnecessarily, it could have synchronised on the database connection instead),
and becomes a bottleneck when many worker threads are using the appender. Since the
exception and property tables are unnecessary, this complexity can also be removed.

Customising data log output

The Grinder datalogger generates| Loggi ngEvent swith the formatted string set
to a comma-separated string (formatted as in the standard data log). It also supplies
aninstance of net . gri nder. engi ne. process. Dat aLogAr gunent s
asthe first and only argument. This can be accessed using

| Loggi ngEvent . get Argunent Array()[0] .

The Dat aLogAr gunent s object provides all the information you might need about a
particular datalog event, including the thread and run numbers, the Test , and the raw
statistics. Refer tothenet . gri nder. engi ne. processs. Thr eadDat aLogger
source code for an example of how to extract the appropriate statistics values from the
raw statistics.

2.3 The Console

2.3.1 The Console User Interface

Follow these instructions (../g3/getting-started.html#howtostart) to start the console.

Page 30

../g3/getting-started.html#howtostart

The Grinder 3

Ll = L] i [=

1 Distribute
=1L
tervak: 1000 ms 7] Graphs Results /_&E Processes | [} Script

amples Q

mples forever [0

ng for samples

1)
an)
124

2.3.1.1 Process controls

The Start processes, Reset processes, and Stop processes menu items send signals

to Grinder processes that are listening. (See the properties (../g3/properties.ntml)
gri nder . useConsol e, gri nder. consol eHost andconsol ePort.) Sart
processes and Reset processes are also tool bar buttons.

Page 31

../g3/properties.html

The Grinder 3

y

These controls will be disabled if no agents are connected to the console. Y ou can check
whether any agents are connected on the Processes tab.

Worker processes that are controlled by the console can be in one of three states:

1. Initiated (waiting for a console signal)
2. Running (performing tests, reporting to console)
3. Finished (waiting for a console signal)

The Start processes control signals to worker processes that they should move into the
running state. Processes that are already running will ignore this signal. Processes that are
in the finished state exit; the agent process will then reread the propertiesfile, and launch
new worker processes in the running state.

The Reset processes control signals all the worker processes to exit. The agent process
will then reread the properties file and launch new worker processes.

The Sop processes control signals all processes, including the agent processes, to exit.
Thisisinfrequently used, you usually want to use Reset processes instead.

Each time the worker processes run, they generate a new set of logs. Logs from previous runs
are "archived" by renaming them. The number of logs that are kept from previous runs can be
controlled with gri nder . nunber O A dLogs.

2.3.1.2 Sample controls

The sample controls determine how the console captures reports from the worker
processes. It is important to understand that these only control the console behaviour. For
example, they do not adjust the frequency at which the worker processes send reports
(seegrinder.report ToConsol e. i nterval (.J/g3/properties.ntml) for that).
Additionally, the sample controls do not interact in any way with the process controls.

Sample interval: 1000 ms

=) .

)

Ignore O samples

Collect samples forever |0

Capture statistics /
Stop capture

;
@ Waiting for samples

Page 32

../g3/properties.html

The Grinder 3

The dlider controls the period at which the console will take a sample. Thisinvolves
adding up all the reports received over that sample interval and calculating the TPS as
(number of tests that occurred)/(interval length). It is also the period at which the console
graphs and statistics are updated.

By default, the consol e starts updating the display and calculating totals from the first
non-zero sample period. A non-zero sample period is one in which an update from a
worker process was received. Y ou can adjust how many non-zero sample periods the
consol e ignores before starting capture with the ignore samples text field.

The third control allows you to adjust how many samples the console will collect before
stopping capture.

Y ou can also manually start and stop the sampling with the Capture statistics/Stop
capture control. Use the Save statistics control to save the current set of statisticsto afile.

2.3.1.3 The Graphs and Results tabs

On the consol e there are two tabs which display information about The Grinder and its
tests. These are detailed below:

Graphs

Each graph displays the 25 most recent Tests Per Second (TPS) values for a particular
test. A new value is added every console sample period. The y-axisis scaled so that the
full height represents the peak TPS value received for the test since the display was last
reset.

The colours are based on the rel ative response time. Long response times are more red,
short response times are more yellow. This acts as an eye-catcher, alowing expensive
tests to be easily spotted.

Results

The Results tab shows the results from The Grinder instrumentation.

Test The test number as specified in the test script, eg.
tests[14000] will display as Test 14000.

Description The test description as specified in the test script.

Successful Tests The total number of iterations of the test that were
successfully executed by The Grinder during the
test run.

Errors The total number of iterations of the test that failed

to be fully executed by The Grinder during the test
run.

Mean Time The mean time taken to execute the test and receive
the full response from the target server/application,
in milliseconds.

Mean Time Standard Deviation The mean standard deviation of the time taken to
execute the test and receive the full response from
the target server/application, in milliseconds.

TPS Transactions per second. The average number of
iterations of the test that successfully ranin aone
second interval.

Page 33

The Grinder 3

Peak TPS Peak Transactions per second. The maximum
number of iterations of the test that successfully ran
in aone second interval.

Thereis additional instrumentation provided by the HTTPPlugin.

Mean Response Length The mean size of HTTP response from the target
server/application in response to the executed test,
in bytes.

Response Bytes per Second The mean number of bytes per second received

from the target server/application, in bytes per
second. This gives an indication of the amount of
bandwidth being consumed by the test. This does
not take into account the amount of traffic being
sent to the target server/application.

Response Errors The total number of HTTP Response Error Codes
(eg, 404, 500 etc) received during the test run.

Mean Timeto Resolve Host The mean time taken to resolve the ip address of
the target server from the Fully Qualified Domain
Name, via hosts file or DNS, in milliseconds. This
isthe timerelative to the start of the test iteration.

Mean Timeto Establish Connection The mean time taken to establish atcp connection
to the target server/application, in milliseconds.
Thisisthetime relative to the start of the test
iteration.

Mean Timeto First Byte The mean time taken to receive the first byte of
response from the target server/application, in
milliseconds. Thisisthetimerelative to the start of
the test iteration.

2.3.1.4 Processes tab

Thistab displays information about the Agents, their worker processes and associated
threads.

Process The name of the process. A parent process will take
the hostname of the box on which it isrunning Its
child processes take the name of the parent process
and add a suffix of "-x" where x is an integer, eg.

myserver-0.
Type The type of process, eg. Agent or Worker.
State Information about the state of the process, eg.

"Connected" for an agent process and "Running"
and "Finished" for a Worker process.
2.3.1.5 Script tab

This tab contains the console support for script editing and distribution. The distribution
controls are also accessible through the Distribute menu.

Script editing and distribution is optional. Y ou don't have to useit, but then you must copy
property files and scripts to each machine that runs an agent, or use a shared drive.

Page 34

The Grinder 3

To use the script distribution, follow these steps:

Set the directory for the script distribution
Create a script and a property file

Select the properties file to use

Distribute the changed files to the agents
Start the Worker processes

g s~ w D pRE

Set the directory for the script distribution

Thefile tree on the left hand side of Script tab is shows the aview of local files on the
console machine. Use the Distribute/Set directory... menu option or the tool bar button
to set the distribution directory to the place where you want to store your scripts. All of
the files below the directory will be distributed to the worker processes, so don't set it to/
home or C:\.

If you are using The Grinder for the first time, you might like to set the distribution
directory to the exanpl es directory in The Grinder installation.

Create a script and a property file

Y ou can use the console to create, view, and edit script files in the distribution directory.
The editor is rudimentary, but good enough for basic editing.

If your script relies on other files (including Jython modules), copy them below the
distribution directory.

Y ou can aso edit filesin the distribution directory with atext editor of your choice. For
convenience, you can define an external editor in the console options (File/Options.../
Script Editor), and launch it by right-clicking on afile in the file tree and selecting Open
with external editor.

Once you have your script ready, create a properties (../g3/properties.ntml) file. Thefile
name extension should be pr opert i es, and unless you have many different properties
filesin the directory, the fileisusually called gri nder . properti es. If your script is
not called gr i nder . py,addagri nder. scri pt property to your propertiesfile:

grinder.script = nyscript.py

The properties sent from the console are combined with any setin a

gri nder. properti es filein the agent's working directory or set on the agent
command line (../g3/properties.html#Specifying+propertieston+the+command+line) . If
aproperty is specified in severa places, the order of precedenceis

» Properties sent by the console] most important]
» Properties set on the agent command line
» Propertiesinthe agent'slocal gri nder . properti es file[least important]

If your agents are running remotely to the console, you will need to set the

gri nder. consol eHost property (and gri nder. consol ePort if the consoleisn't using
the default port) in the agent's command line or local gri nder . properti es soit can make
theinitial connection to the console.

Select the properties file to use

Right-click on the properties file and chose Sel ect properti es.

Page 35

../g3/properties.html
../g3/properties.html#Specifying+properties+on+the+command+line
../g3/properties.html#Specifying+properties+on+the+command+line

The Grinder 3

% Graphs [Results [\ﬁ Processes [Script |

h - {0 R
[} arinder.py grinder.logDirectory=Tog
E% grinder properties grinder.threads=5
> [ftmp/example grinder.processes=1
o= [messages grinder.runs=0
B Test.py grinder.script=mnyscript.py

@ grinder.properties
rl
I;E myscript.py

grinder.prope

The properties file and the script to which it refers will be indicated with a star.

Distribute the changed files to the agents

Sdlect the Distribute/Distribute files menu item, or click on the toolbar button.

Send changed files » ﬁj
to worker processes

Each agent maintainsits own local cache of the files below the distribution directory.
When you select Distribute files, any files that have changed will be sent to the agents.
The distribution controls will only be enabled if one or more agents is connected to the
console, and one or more files has been edited.

Start the Worker processes

Select Start processes as described above.

2.3.1.6 Internationalisation help wanted

If you are bilingual you might fancy translating the console (../development/
contributing.html#trandating) into alanguage of your choice.

2.3.2 The Console Service

2.3.2.1 Overview

The console service provides an interface for automating The Grinder. It allows The
Grinder to be controlled by a scheduler or a Continuous Integration framework such

as Hudson/Jenkins; remote monitoring using aweb browser; and creative possibilities
such monitoring and influencing the test execution from atest script, perhaps by starting
additional worker processes.

Y ou can use the console service to start and stop worker processes, change console
options; distribute script files; start and stop recordings; and obtain aggregated test
results.

Page 36

../development/contributing.html#translating

The Grinder 3

The first version of the console service was released as part of The Grinder 3.10, and
provides REST web services. Future releases will provide other flavours of interface,
such as a browser-based user interface, and event-driven publication of data.

2.3.2.2 Configuration

The console hosts an HTTP server that runs the console service. When the consoleis
started, the server listens for HTTP requests on port 6373. For most users, the console
service should work out of the box with no further configuration.

If port 6373 is unavailable, an error message will be presented. This usually occurs
because another program has claimed the port. Perhaps there two copies of the console
have been started. Y ou can change the HTTP port using the console options, and also set
the HTTP host to your publicly accessible host name or |P address. In fact, unless you
change the host name, the HTTP server will listen on localhost, and you'll only be able to
connect to the console from local processes.

Y ou can check that the console service has started correctly by using your browser to
access http://localhost:6373/version. If the service is running, the browser will display the
version of The Grinder.

Running without a GUI

If you don't use the graphical user interface (../g3/console.html) , you can start the
consolein in atermina mode by passing a- headl ess option as follows.

java -classpath lib/grinder.jar net.grinder.Consol e -headl ess

Setting the HTTP address and port on the command line

Y ou can a'so specify the console service address and port on the command line,
overriding the console options:

java -classpath lib/grinder.jar -Dgrinder.console. httpHost=nyhost -
Dgri nder. consol e. htt pPort=8080 net. gri nder. Consol e

Herenyhost should resolveto alocal |P address.

2.3.2.3 The REST interface

The REST interface accepts HTTP GET, POST, and PUT requests. The request's Accept
header is used to select the formatting of the response.

application/clojure Clojure data structure
application/json JSON

appl i cati on/ x-yam YAML

text/htm YAML wrapped in HTML
No accept header JSON

Other values 406 Not Acceptable

Page 37

http://localhost:6373/version
../g3/console.html

The Grinder 3

The YAML in HTML support alows simple access to some of the services (those that
use GET) from aweb browser.

Some of the POST and PUT requests require additional data to be supplied in the body
of the request. The request's Cont ent - Type header is used to determine whether the
request body should be parsed as JSON, YAML, or a Clojure data structure.

application/clojure Clojure map
application/x-clojure

application/json JSON object
appl i cation/ x-j son

appl i cati on/ yam YAML map
appl i cati on/ x-yamn

text/yam

text/ x-yan

Other values Ignored

Available services

The following services are available.

POST [agent s/ start-workers Send a start signal to the agents
to start worker processes.
Equivalent to the start processes
('../g3/console.html#process-
controls) button.

GET [agent s/ st at us Returns the status of the agent
and worker processes.

POST [agent s/ st op Terminates all agents and their
worker processes. Y ou will
usualy want / agent s/ st op-
wor ker s instead.

POST [agent s/ st op- wor kers Send a stop signal to connected
worker processes. Equivalent
to the reset processes (../g3/
consol e.html#process-control s)
button.

POST /files/distribute Start the distribution of filesto
agents that have an out of date
cache. Distribution may take
sometime, so the service will
return immediately and thefiles
will be distributed in proceeds
in the background. The service
returnsamap withan : i d entry
that can be used to identify the
particular distribution request.

GET [files/status Returns whether the agent caches
are stale (i.e. they are out of date
with respect to the console's

Page 38

../g3/console.html#process-controls
../g3/console.html#process-controls

GET

PUT

POST

GET

GET

POST

POST
GET

POST

POST

GET

[properties

[properties

/ properties/save

/recordi ng/ data

/ recordi ng/ dat a- | at est

/recording/start

/ recordi ng/ stop

[recordi ng/ st at us

[recordi ng/ reset

/recordi ng/ zero

/ ver si on

The Grinder 3

central copy of thefiles), and the
status of the last file distribution.

Return the current values of the
console options.

Set console options. The body

of the request should be amap

of keysto new values; you

can provide some or al of the
properties. A map of the keys and
their new values will be returned.
Y ou can find out the names of
the keys by issuing aGET to/
properties.

Save the current console
options in the preferencesfile.
The preferencesfileiscaled

. grinder_consol eandis
stored in the home directory of
the user account that is used to
run the console.

Return the current recorded
data. Equivalent to the data
intheresultstab (../g3/
console.html#Results) .

Return the latest sample of
recorded data. Equivaent to
the datain the lower pane
of theresultstab (../g3/
console.html#Results) .

Start capturing data. An initial
number of samples may be
ignored, depending on the
configured console options.

Stop the data capture.

Return the current recording
status.

Discard all recorded data. After
areset, the model loses al
knowledge of Tests; this can be
useful when swapping between
scripts. It makes sense to reset
with the worker processes
stopped.

Reset the recorded data values to
zero.

Returns the version of The
Grinder.

Page 39

../g3/console.html#Results
../g3/console.html#Results

The Grinder 3

2.3.2.4 Example session

Let's have alook at an example terminal session that exercises the REST interface. Well
use curl (http://curl.haxx.sef) as aclient, but other HTTP clients will work will aswell.

A web cast of asimilar example session is available on Y ouTube (http://www.youtube.com/
watch?v=0zB3bvQnS7U) .

Starting up

First, we start the console, specifying - headl ess because we're not going to be using
the GUI.

% java -classpath lib/grinder.jar net.grinder.Consol e -headl ess

2012-05-30 18:33:30,472 INFO consol e: The Ginder 3.10- SNAPSHOT
2012-05-30 18:33:30,505 INFO org.eclipse.jetty.server.Server: jetty-7.6.1.v20120215
2012-05-30 18:33:30,538 INFO org.eclipse.jetty.server. Abstract Connector:

Started Sel ect Channel Connect or @ 6373

Y ou can see the console service islistening on port 6373, as expected. Now open another
terminal window, and check the lights are on.

% curl http://1ocal host: 6373/ version

The Grinder 3.10- SNAPSHOT

The consol e service has responded with the appropriate version string, as expected.
Next let's ask for the current console options.

% curl http://1ocal host: 6373/ properties

{"httpPort": 6373, "significantFigures":3,"collectSanpl eCount": 0,

"ext ernal Edi t or Command":"", "consol ePort": 6372, "start Wt hUnsavedBuf f er sAsk": true,
"scanDi stri butionFil esPeriod": 6000, "reset Consol eWthProcesses": fal se

"sanpl el nterval ": 3100, "reset Consol eWt hProcessesAsk": true,

"frameBounds": [373, 168, 1068, 711], "htt pHost":"", "ext er nal Edi t or Argunents":"",
"i gnoreSanpl eCount": 0, "consol eHost":"","distributeOnStartAsk": fal se,
"propertiesNot Set Ask":true,"distributionDirectory":"/tnp/grinder-3.9.1/foo",
"propertiesFile":"/tnp/grinder-3.9.1/foo/grinder.properties",
"distributionFileFilterExpression":

"ACVS/ $| M\ . svn/ $| N *~$| M(out _|error_|data_)\\w+-\\d+\\.log\\d*$",

"saveTotal sWthResul ts": fal se, "st opProcessesAsk":true, "l ookAndFeel ": nul |}

The console options are returned in the response body as a JSON object containing key/
value pairs. Thisformat is easily to parse with a scripting language, or JavaScript in a
browser.

Setting the properties

Some of the console options are only relevant to the GUI, but others also affect the
console service. The following command changes the distribution directory to the
examples directory in our distribution, and selectsthegr i nder . properti es file.

% curl -H "Content-Type: application/json" -X PUT http://|ocal host: 6373/ properties
-d "{"distributionD rectory":"exanples", "propertiesFile":"grinder.properties"}'

{"propertiesFile":"grinder.properties","distributionDirectory":"exanpl es"}

Page 40

http://curl.haxx.se/
http://www.youtube.com/watch?v=OzB3bvQnS7U

The Grinder 3

The properties that were changed are returned in the response body.

Connecting an agent

In athird terminal window, let's start an agent. We'll be distributing files to the agent
which it will cache in its working directory, so we'll do so in atemporary directory.

%cd /tnp
% java -classpath ${GRI NDER_HOME}/ i b/ grinder.jar net.grinder.Ginder

2012- 05-30 18:54:30,674 INFO agent: The Ginder 3.10- SNAPSHOT
2012-05-30 18:54:30,737 INFO agent: connected to console at |ocal host/127.0.0.1: 6372
2012-05-30 18:54:30,737 INFO agent: waiting for consol e signal

The agent has connected to the console. We could start up other agents, perhaps on other
machines; we'd just need to add - Dgr i nder . consol e. Host =consol e- machi ne
beforenet . gri nder. Gri nder.

We can confirm that the console knows about the agent.

% curl http://1ocal host: 6373/ agent s/ st at us

[{"id":"paston02: 968414967| 1338400470671| 425013298: 0", "nane": "past on02", "nunber": - 1,
"state":"RUNNING', "workers":[]1}]

The agent is running, and it has not yet started any worker processes. Now we'll distribute
the scripts to the agent.

% curl -X POST http://1ocal host: 6373/files/distribute

{"id":1,"state":"started","files":[]}

File distribution is asynchronous - the result indicates that the distribution request has
been queued, and alocated id 1. We can find out where it's got to by querying the status.

% curl http://1ocal host: 6373/fil es/status
{"stale":false,"last-distribution":{"per-cent-conplete":100,"id":1,"state":"finished",
"files":

["cooki es. py", "di gest aut henti cati on. py", "ej b. py", "jdbc. py", "httpg2. py", "consol e. py",
"slowd ient.py", "httpunit.py", "sequence. py","jnmssender. py", "grinder.properties", "sync. py",
"amazon. py", "hel | owor | df uncti ons. py", "form py", "xm -rpc. py", "paral |l el . py", "j axrpc. py",

"scenario. py", "threadranpup. py", "statistics.py","jnmsreceiver.py", "hell oworl d. py",
"helloworld.clj","proportion.py","fba.py","scriptlifecycle.py","email.py", " "http.py"]}}

Thistells us that the agent caches are no longer stale, and the distribution 1 completed,
sending the list of files to the agents.

Starting the workers

We're going to have The Grinder start some worker processes and run the helloworld.py
(../g3/script-gallery.html#helloworld.py) script, which is one of the files we've just sent.

We previously set the console option propertieskile to a properties file in the distributed
files(wechosegri nder. properti es). Setting this option causes the agent to first
look for any script file in its distribution cache, falling back to its working directory if the

Page 41

../g3/script-gallery.html#helloworld.py

The Grinder 3

fileisn't found. We can override the valuesin the distributed gr i nder . properti es
file in properties sent with the start command.

Distributing the files to the agentsis optional. If you do so, then be sure to set propertiesFile
to avalid properties file in the distribution. Otherwise, the agent will resolve the script file
name relative to its working directory, ignoring the files in the distribution cache. If you don't
distribute the files you'll have to make sure the agent can find the script through some other
means, such as afile system share.

Properties supplied with the start command override those specified with propertiesFile, which
in turn override those specified as system properties on the agent or worker process command
lines, which in turn override those found inagr i nder . properti es filein the agent's
working directory.

The following starts two worker processes, to perform three runs of helloworld.py, using
five worker threads each.

% curl -H "Content-Type: application/json" -X POST http://local host: 6373/ agents/start-

workers -d '{"grinder.processes" : "2", "grinder.threads" : "5", "grinder.runs" : "3",
"grinder.script" : "helloworld. py" }'
success

Obtaining the results

Let's stop the recording. Until we do this, the TPS will be calculated over an
increasing duration, and steadily fall. When doing real tests, it's more common to set
grinder. runs to O so that the workers don't stop until instructed to do so, and to
record a period of data before they are stopped.

% curl -X POST http://|ocal host: 6373/ recordi ng/ st op

{"state":" Stopped", "description":"Collection stopped"}

We can now retrieve the recording data.

% curl http://1ocal host: 6373/ recordi ng/ data

{"status":{"state":"Stopped", "description":"Collection stopped"},

"colums":["Tests","Errors","Mean Test Tine (ns)","Test Tinme Standard Deviation
(ms)","TPS", "Peak TPS"],

"tests":[{"test":1,"description":"Log nmethod", "statistics":

[30,0,0.2,0.4,9.674298613350532,

9.67741935483871] }],

"total s":[30,0,0.2,0.4,9.674298613350532, 9. 67741935483871] }

There were 30 executions of Test 1 as expected (2 worker processes x 5 worker threads x
3 runs), with an average execution time of 0.2 ms.

% curl http://1ocal host: 6373/ recordi ng/ dat a-1 at est

{"status":{"state":"Stopped", "description":"Collection stopped"},

"colums":["Tests","Errors","Mean Test Tine (ns)","Test Tinme Standard Devi ation
(ms)","TPS", "Peak TPS'],

"tests":[{"test":1,"description":"Log nethod","statistics":

[30,0,0.2,0.4,9.674298613350532,

9. 67741935483871] }],

"total s":[30,0,0.2,0.4,9.674298613350532, 9. 67741935483871] }

Page 42

Browser

The Grinder 3

Adding the -latest will retrieve the latest sample data available. Thisis most useful to get
near real time data a currently executing test.

Again, there were 30 executions of Test 1 as expected (2 worker processes x 5 worker
threads x 3 runs), with an average execution time of 0.2 ms.

Conclusion

| hope you've enjoyed this quick tour of the console service. Start the console and an
agent yourself, and have aplay.

Tips

If acall to aservice resultsin Resource not found, check you've used the appropriate HTTP
method (GET, PUT, or POST).

Y ou might find it simpler to run the console GUI (don't add - headl ess to the command line).
Thiswill allow you to see the current consol e status at a glance.

2.4 The TCPProxy

The TCPProxy is aproxy process that you can place in a TCP stream, such asthe HTTP
connection between your browser and a server. It filters the request and response streams,
sending the results to the terminal window (st dout). Y ou can control its behaviour by
specifying different filters.

TCPProxy

(-) :

Qutput

The TCPProxy's main purpose is to automatically generate HT TP test scripts that can be
replayed with The Grinder's HTTP plugin. Because the TCPProxy lets you see what's
going on at anetwork level it isaso very useful as adebugging tool inits own right.

Page 43

Servel

ER i

The Grinder 3

2.4.1 Starting the TCPProxy

Y ou start the TCPProxy with something like:

CLASSPATH=/ opt/ gri nder/1ib/grinder.jar
export CLASSPATH

java net.grinder. TCPProxy

Sayj ava net.grinder. TCPProxy -? togetafull list of thecommand line
options.

With no additional options, the TCPProxy will start and display the following
information:

Initialising as an HTTP/ HTTPS proxy with the paraneters:
Request filters: EchoFilter
Response filters: EchoFilter
Local address: | ocal host : 8001

Engine initialised, listening on port 8001

Thisindicates that the TCPProxy islistening asan HTTP proxy on port 8001 (the
default, but you can changeit with - | ocal Port).

The TCPProxy appearsto your browser just like any other HTTP proxy server, and you
can use your browser asnormal. If youtypeht t p: // gri nder. sour cef or ge. net
into your browser it will display The Grinder home page and the TCPProxy will output
all of the HTTP interactions between the browser and the SourceForge site.

The TCPProxy will proxy both HTTP and HTTPS. See below for details on customising
the SSL configuration.

2.4.2 Preparing the Browser

Y ou should now set your browser connection settings to specify the TCPProxy as the
HTTP proxy. In the browser options dialog, set the proxy host to be the host on which the
TCPProxy is running and proxy port to be 8001).

Page 44

The Grinder 3

Preferences
iZakteqgar .
Do Proxies
[» Appearance =
~ N:avigatn:nr Zonfigure Proxies ko Access the Internet
;---Histnr':.f _ _
é---Languages I::J Direct connection to the Inkernet
E"'HEHI'EI’ Applicat... (®) Manual procey configuration
- Smart Browsing HTTP Proxy: (localhost | Port: |s001
- Internet Search
e S5L Praxy: |localhost | Part: |&001
- Tabbed Browsing
' Downloads = ETP Proxy: | | Port: D
[+ Composer opher Proxy: | | Part: D
[Mail & Mewsgroups SOCKS Host: | | Port: [0]
[Privacy & Security
SOCES we SOCKES wh
[» ChatZila O ©
= advanced Mo Proxy Faor: | |
- Scripts & Plugins Exarmple: .mozilla,org, .net.nz
E---Keybnard Mavi. .. () Automatic proxy configuration URL:
é---Cache — |
é---F‘eries
é---HTTF‘ Metwiarking
é---SnFtware Insta. ..
-Mouse Wheel]

[0] 4] [Cancel] [

Help

The relevant options dialog can be accessed by the following steps:

MSIE: Tools-> Internet Options -> Connections -> Local Area Network Settings.
M ozilla/Netscape: Edit -> Preferences -> Advanced - Proxies.

M ozilla/Firefox: Tools -> Options -> General -> Connection Settings.

Opera: Tools-> Preferences -> Advanced -> Network -> Proxy Servers.

It isimportant to remember to remove any "bypass proxy server” or "No Proxy for"
settings that you might have so that all the traffic flows through the TCPProxy and can be
captured.

It might also be agood ideato clear out any cache/temporary Internet files that might

be on your workstation. On the other hand, you might decide not to do thisif you want
to record a script representing a frequent user to your site who has images are resources
in their browser cache (../fag.html#http-caching) . Also for |E users, changing the
temporary Internet files settings to check for a newer version on every visit to a page can
be useful.

Page 45

../faq.html#http-caching
../faq.html#http-caching

The Grinder 3

settings 2| |

o “heck far newer versions of stored pages:
* (% Ewvery visit ko the page
i Every kime wou skark Internet Explorer
™ Aukomatically
" Mever

—Temporary Internet Files Folder

iZurrent location: Ci\Documents and
Settingsifitzgecz . THEAA\Local
Setkings! Temporary Inkernet Filesh

Armount of disk space ko use:

) | 20 =] M8

Move Folder, .. Yiew Files, .. | YWiew Objects, .. |

(8] 4 Cancel

2.4.3 Using the EchoFilter

The EchoFilter is the default filter used by the TCPProxy if no options are specified in
the startup command. The EchoFilter outputs the stream activity to the terminal. It can be
very useful for debugging as described in this FAQ (../fag.html#use-the-tcpproxy) .

Bytes that do not have a printable ASCII representation are displayed in hexadecimal
between square brackets. Here's some exampl e output:

------ 127.0.0. 1: 2263- >ads. osdn. com 80 ------

CGET /?ad_i d=5839&al | oc_i d=12703&si t e_i d=2&r equest _i d=8320720&1102173982760 HTTP/ 1.1

Host: ads. osdn.com

User-Agent: Mzilla/5.0 (Wndows; U, Wndows NT 5.0; en-US; rv:1.7.5) Gecko/ 20041107
Firefox/1.0

Accept: inmge/png,*/*;q=0.5

Accept - Language: en-gb, en-us; q=0. 7, en; g=0. 3

Accept - Encodi ng: gzi p, defl ate

Accept - Charset: |SO 8859-1, utf-8;q9=0.7,*;q9=0.7

Keep- Al'i ve: 300

Proxy- Connecti on: keep-alive

Referer: http://sourceforge. net/projects/grinder

--- ads. osdn. com 80->127. 0. 0. 1: 2263 opened - -

------ ads. osdn. com 80->127.0.0. 1: 2273 ------

HTTP/ 1.1 200 K

Date: Sat, 04 Dec 2004 15:26:27 GMI

Server: Apache/1.3.29 (Unix) nod_gzip/1.3.26.1a nod_perl/1.29
Pragnma: no-cache

Cache-control: private

Connection: close

Transf er - Encodi ng: chunked

Page 46

../faq.html#use-the-tcpproxy

The Grinder 3

Content - Type: image/gif

------ ads. osdn. com 80->127.0.0.1: 2273 ------
80B
G F89ae[00]) [00D50000C3C3C3FEFDFD] hhhVW\yyy[F5CCD2D4D4D4CBCBCBD7] ' F

Information lines are displayed to indicate the end point addresses and direction of the
information flow and also whether a connection has just been opened or closed.

2.4.4 Using the HTTP TCPProxy filters

Y ou can use the TCPProxy to generate an HT TP script suitable for use with The Grinder.
The Grinder provides a pair of HTTP filtersfor this purpose. These filters are enabled by
the - ht t p command line option.

Thefirst step isto start the TCPProxy with an HTTP filter:

java net.grinder. TCPProxy -console -http > grinder. py

The> gri nder . py part of the line sendsthe script to afilecalled gri nder . py.
The terminal output of the TCPProxy looks like:

14/ 03/ 06 17:04:25 (tcpproxy): Initialising as an HTTP/HTTPS proxy with the
paranmet ers:

Request filters: HTTPRequest Fi l ter
Response filters: HTTPResponseFi | ter
Local address: | ocal host: 8001

14/ 03/ 06 17:04:27 (tcpproxy): Engine initialised, listening on port 8001

The console (initiated by -console) displays a simple control window that allows the
TCPProxy to be shut down cleanly. Thisis needed because some terminal shells, e.g.
Cygwin bash, do not allow Java processes to be interrupted cleanly, so filters cannot rely
on standard shut down hooks. The console also allows a user to add ad-hoc commentary
to the script during the recording. The console looks like this:

f:} TCPProxy Console EHEH

|ln5er1 a comment and press enter Insert comment | S5top J

The TCPProxy console will be incorporated into the main console (../g2/console.html) in
afuturerelease.

Set your browser to use the TCPProxy asthe HTTP proxy as described earlier), and run
through your test scenario on your website.

Having finished your run through, press " Stop" on the TCPProxy console and the
generated script will be writtento gr i nder . py.

Thegri nder . py file contains headers, requests and alogical grouping of requestsinto
pages, of the recorded tests.

For example, the headers section:

The Ginder 3.11- SNAPSHOT
HTTP script recorded by TCPProxy at 05-Jul-2012 09: 20: 55

Page 47

../g2/console.html

The Grinder 3

fromnet.grinder.script inport Test
fromnet.grinder.script.Ginder inport grinder
fromnet.grinder.plugin.http inport HTTPPl ugi nControl, HTTPRequest
fromHTTPCl i ent inport NVPair

connectionDefaul ts = HTTPPI ugi nControl . get Connecti onDef aul t s()
httpUtilities = HTTPPl ugi nControl .getHTTPUtilities()

To use a proxy server, unconment the next |line and set the host and port.
connectionDefaul ts. set ProxyServer ("l ocal host", 8001)

def createRequest(test, url, headers=None):
"""Create an instrumented HTTPRequest."""
request = HTTPRequest (url =url)
i f headers: request. headers=headers
test.record(request, HITPRequest.getHttpMethodFilter())
return request

These definitions at the top level of the file are eval uated once,
when the worker process is started.

connectionDef aul ts. def aul t Headers =\
[NVPair('Accept-Encoding', 'gzip, deflate'),
NVPai r (' Accept - Language', 'en-gb,en;g=0.5"),
NVPai r (' Cache-Control', 'no-cache'),
NVPai r (' User-Agent', 'Mzilla/5.0 (X11; Ubuntu; Linux x86_64; rv:13.0)
Gecko/ 20100101 Firefox/13.0.1'),]

header s0= \
[NVPair('Accept', '"text/css,*/*;q=0.1"),
NVPair (' Referer', 'http://grinder.sourceforge.net/"'),]

headersl=\

[NVPair('Accept', "*/*"),
NVPair (' Referer', 'http://grinder.sourceforge.net/"'),]
headers2=\
[NVPair('Accept', 'inmagel/png,inage/*;q=0.8,*/*;9=0.5"),
NVPair (' Referer', 'http://grinder.sourceforge.net/"'),]
header s3=\
[NVPair('Accept', 'inmmgel/png,inage/*;q=0.8,*/*;9=0.5"),
NVPair (' Referer', 'http://grinder.sourceforge.net/skin/screen.css'),]
header s4=\
[NVPair('Accept', 'inmmgel/png,inage/*;q=0.8,*/*;9=0.5"),
NVPair (' Referer', '"http://grinder.sourceforge.net/skin/profile.css'),]

#....

In the requests section, a request object for each unique URL is created:

url0 = "http://grinder. sourceforge. net: 80
url1l = "http://ww. ohl oh. net: 80'
url2 = "http://sourceforge. net: 80

request 101 = creat eRequest (Test (101, 'GET /'), url0)
request 102 = creat eRequest (Test (102, ' GET profile.css'), url0, headers0)
request 103 = creat eRequest (Test (103, ' GET screen.css'), url0, headers0)
request 104 = creat eRequest (Test (104, 'GET print.css'), url0, headers0)
...
Note the use of thecr eat eRequest helper function, which was defined earlier. This

function createsa HTTPRequest object and instrumentsits GET, POST, ..., methods to
report call statistics against the supplied Test .

Page 48

The Grinder 3

Finally the TestRunner class. This section groups the requests into pages and defines each
page as a method, sets the sleep interval between requests, and provides an instrumented
method for the return of datafrom the tests:

A method for each recorded page.
def pagel(self):
"""GET / (requests 101-131)."""
result = request101. GET('/', None,
(NVPair('Accept', "text/htm 6 application/xhtm +xm , application/xm;qg=0.9,*/
*;0=0.8"),))
sel f.token_subject =\
httpUtilities.val ueFromBodyURI (' subject') # 'Feedback on The Ginder web
site index.h...'
sel f.token_sitesearch =\
httpUtilities.val ueFronH ddenl nput (' sitesearch') # 'grinder.sourceforge.net'

grinder. sl eep(176)
request 102. GET(' / skin/profile.css')

request 103. GET(' / ski n/ screen. css')
request 104. GET(' /skin/print.css")

request 105. GET(' / ski n/ basi c. css")

return result

def page2(self):

#o.o.o..
def __call__(self):
"""Called for every run performed by the worker thread."""
sel f. pagel() # GET /| (requests 101-131)

grinder. sl eep(39)
sel f. page2()
sel f. page3()
sel f. page4()
sel f. page5()

GET project_users.js (requests 201-202)
GET pdfdoc.gif (requests 301-305)

GET sfl ogo. php (request 401)

GET external -l1ink.gif (request 501)

I nstrunent page met hods.
Test (100, 'Page 1').record(TestRunner. pagel)
Test (200, 'Page 2').record(Test Runner. page2)

Once you've recorded your script you have two methods that you can use to replay your
script:

1

You can createasimplegr i nder . properti es (../g3/properties.ntml) file and
you can replay the recorded scenario with The Grinder. Y our propertiesfile should at
least set gri nder. scri pt togri nder. py.

Alternately you can use the console to distribute your script to an agent and set it as
the script to run (../g3/console.html#Script+tab) . Each agent will still need asimple
grinder. properties (.J/g3/properties.ntml) file containing the console address,
though you will not need to set thegr i nder . scri pt property.

The recorded script grinder.py can be edited by hand to suit your needs.

Page 49

../g3/properties.html
../g3/console.html#Script+tab
../g3/console.html#Script+tab
../g3/properties.html

The Grinder 3

2.4.4.1 Generating a Clojure script

Y ou can generate a Clojure script using - ht t p ¢l oj ur e on the command line. For
example:

java net.grinder. TCPProxy -http clojure -console

2.4.4.2 Altering the output with custom stylesheet

The TCPProxy HT TP filtersinstalled with- ht t p,-http jython,and-http
cl oj ur e, each create their output by transforming an XML model of the HTTP request/
response stream using an XL ST stylesheet.

These standard stylesheets can be found in et c. You can use a stylesheet of of your
own making to customise the output of the filter. Y ou should pass the file name of your
custom stylesheet as acommand line argument directly after - ht t p.

If you want to see the intermediate XML model you can use:

java net.grinder. TCPProxy -http etc/httpToXM. xsl -consol e
The model confirmsto the XML schemaet ¢/ t cppr oxy- http. xsd.

2.4.4.3 How to offset test numbers

If sometimes useful to offset test numbers for a test script when running several different
scripts together, perhaps using the sequence (../g3/script-gallery.html#sequence.py) ,

or parallel (../g3/script-gallery.html#parallel.py) examples from the script gallery.

This gives the tests contributed by each script a distinct range of test numbers, whichis
important because the test number uniquely identifies the test in the console and the data
logs.

The HTTP TCPProxy filter alows the recording of atest script with off-setting test
numbers. Thisisdone using the HTTPPI ugi n. i ni ti al Test property, which can
either be set directly on the command line, or in afileusing the - pr operti es option.
Here's an example that will start the test numbers at 1000:

java -DHTTPPl ugin.initial Test=1000 net.grinder.TCPProxy -http

Its also simple to offset test values by modifying the script.
Edit the recorded script to replace:

fromnet.grinder.script inmport Test

with:

fromnet.grinder.script inport Test as StandardTest

def Test (nunber, description):
Adjust the 1000 to the appropriate offset.
return StandardTest (nunber + 1000, description)

Neither technique allows different test scripts to be merged together into one because you
also have to alter the identifiers used for headers, URLS, pages, tokens, and so on. If you
want to do this, you might consider a_custom stylesheet.

Page 50

../g3/script-gallery.html#sequence.py
../g3/script-gallery.html#parallel.py

Browser

The Grinder 3

2.4.4.4 How to record additional headers

By default, the following HTTP headers are recorded from the HTTP stream.
o Accept

* Accept-Charset

* Accept-Encoding
* Accept-Language
» Cache-Control

* Referer

o User-Agent

* Content-Type

* If-Modified-Since
* [f-None-Match

Additional headers can be specified with the HTTPPI ugi n. addi ti onal Header s
system property. The value is a comma-separated list of header names. For example:

java net.grinder. TCPProxy -DHTTPPI ugi n. addi ti onal Header s=MyHeader , Anot her Header Nare -
http

2.4.5 SSL and HTTPS support

The TCPProxy has SSL support based on Java's JSSE (http://www.oracle.com/
technetwork/javal/javase/tech/index-jsp-136007.html) framework.

SSL relationships are necessarily point to point. When you interpose the TCPProxy

in SSL communications between a browser and a server you end up with two SSL
connections. Each SSL connection hasits own set of client and server certificates (both of
which are optional).

TCPProxy

H | -
% P> H] ,f’f'j L

The TCPProxy will negotiate appropriate certificates for both connections using built-

in certificates or those from a user-specified Java key store. In particular, the TCPProxy
needs a self-signed server certificate for the connection from the browser. By default, the
TCPProxy will use a built-in certificate.

When first establishing a connection, your browser will present awarning and
confirmation dialog. Thisis because the built-in certificate isn't authorised by any of
the certificate authorities that the browser trusts. Additionally, the built-in certificate

Page 51

Servel

i

http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136007.html

The Grinder 3

authorises| ocal host soif your server doesn't listen at this address the browser will
complain. Choose the "accept this certificate for this session” option.

The Grinder deliberately accelerates SSL initialisation by using a random number generator
that is seeded with afixed number. This does not hinder SSL communication, but theoretically
makes it |ess secure. No guarantee is made as to the cryptographic strength of any SSL
communication using The Grinder.

2.4.5.1 Custom certificates

With more complicated pages, a browser may not give you the option to accept the test
certificate. In this case, you can specify your own server certificate for the connection
from the browser, or add client certificates for the connection to the server, using the -
keyst or e, - keyst or epasswor d, and - keyst or et ype options. See the J2SE/
JSSE documentation for how to set up akey store.

If you fail to provide akey store with avalid server certificate , you may get a No
available certificate corresponds to the SS. cipher suites which are enabled exception,
and your browser may report that it cannot communicate as it has no common encryption
algorithms. Internet Explorer likesto be different. If start the TCPProxy without avalid
server certificate and then connect through it using Internet Explorer, the TCPProxy will
report "SSL peer shut down incorrectly. The browser will just spin away until it times out.
The easiest way to provide a server certificate isto copy the testkeys file from the JSSE
samples distribution (http://www.oracle.com/technetwork/javal/jsse-136410.html) and
start the proxy using:

java net.grinder. TCPProxy -keyStore testkeys -keyStorePassword passphrase

Alfin Hgji provided the following helpful write-up explaining how he solved a problem
using a custom keystore:

The site we were testing had an embedded iframe that was making a call out to

an HTTPS endpoint using an AJAX call viajavascript. This endpoint was further

making a call out to another HTTPS endpoint. The self-signed cert that Grinder was
issuing was causing the following error to be thrown in developer tools of Chrome:
net::ERR_INSECURE_RESPONSE. As aresult, al the content in that iframe was blank
and not being rendered (I1E was throwing a content blocked error). |E developer tools was
also throwing an error in developer tools that indicated the content was in mixed security
format (HTTPand HTTPS) - SEC7111 "HTTPS security is compromised by [name of
resource]”.

Now since al traffic needs to go through alocal proxy (TCPProxy), and since some of
that traffic was secured, TCPProxy had to do aMITM in order to decrypt the secure
traffic. However, since TCPProxy had an untrusted cert with hostnames not matching
those endpoints that our app was calling out to, the browser generated an error.

Resolution: We created a self-signed cert using keytool .exe and we added the sites/
endpoints we was testing in the Subject Alternative Name section of the certificate. We
then added the new certificate to the browser’ strust store:

1. Create certificate using keytool.exe and add the sites/endpoints you are testing that are
blocking content from being shown in browser. Example below:

Page 52

http://www.oracle.com/technetwork/java/jsse-136410.html
http://www.oracle.com/technetwork/java/jsse-136410.html

Erowser

The Grinder 3

keyt ool -genkeypair -keystore keystore -dnane "CN=test, OU=Unknown, O=Unknown,
L=Unknown, ST=Unknown, C=Unknown" -storepass password -keyalg RSA -alias self-
signed-cert —ext SAN=dns: donmi nl, dns: domai n2

Y ou can add as many SANs as you want. Delimit them with “:” and if you are adding
aDNS name, start with dns:

2. Launch tcpproxy with the keystore generated above: j ava - cl asspat h
UCLASSPATHY net . gri nder. TCPProxy -keyStore pathtoabove
keystore - key St or ePassword password -console -http >
script. py

3. Point your browser to the proxy, you will get a certificate error. |E for some reason
didn't allow usto export the certificate, so we used Chrome. Export in base64 format.

4. Thenin IE, imported the certificate to the trust store: Internet Options > Content
> Certificates > Trusted Root Certification Authorities > Import. Browse to the
exported certificate from step 3 above and import.

5 Restart the browser and navigate to the app. Y our certificate should now be valid and
content that was blocked should now be visible since the domains that were blocking
the content are valid for the certificate provided (from step 1).

2.4.6 Using the TCPProxy with other proxies

The TCPProxy can be used with other HTTP/HTTPS proxies.

HTTPHTTPS

TCPProxy Proxy

el

Usethe- ht t ppr oxy option to specify the host name and port of the proxy. Use the -
ht t pspr oxy option only if your HTTPS proxy requires separate settings.

2.4.7 Using the TCPProxy as a port forwarder

It isnormally most useful to use the TCPProxy inits HTTP Proxy mode as described
above.

When using the TCPProxy as a debugging tool it occasionally is useful to useit in port
forwarding mode. This mode is enabled when one or more of - r enot ehost and -

r enot eport are specified. In port forwarding mode, the TCPProxy simply listens on
| ocal host: | ocal port andforwardstor enot ehost : r enot eport.

To understand why HTTP Proxy mode is usually better than port forwarding mode
when using a browser, consider what happens if the remote server returns a page with
an absolute URL link back to itself. If you click on the link, the browser will contact the
server directly, bypassing the TCPProxy. Another disadvantage is that you can't use the
TCPProxy with more than one remote sever.

Page 53

Serve

2.4.8 Summary of TCPProxy options

Commonly used options

-consol e

-http [styl esheet]

-requestfilter filter

-responsefilter filter

-l ocal host host

-l ocal port port

-keystore file

- keyst or epassword password

-keystoretype type

Lessfrequently used options

-properties file

The Grinder 3

Display asimple console that has a control button
that allows The TCPProxy to be shut down cleanly.
This can help in certain situations where a hard kill
of the TCPProxy process would lose output that is
still buffered in memory.

Adds a standard request filter and response filter
to produce a Jython script for The Grinder suitable
for use with the HTTP plugin. The default filter
generates a Jython script and is equivalent to -
http jython. Alternatively, usecl oj ur e

to produce a Clojure script, or the output can be
customised completely by providing the file name
of an XSLT style sheet.

Add arequest filter.fi | t er canbe

the name of a class that implements

net. grinder.tool s.tcpproxy. TCPProxyFilter
or one of NONE, ECHO. The option can be specified
multiple times, in which case the filters are invoked

one after another. If the not specified, the default
ECHOfilter is used.

Add aresponsefilter. fi | t er canbe

the name of a class that implements

net. grinder.tool s.tcpproxy. TCPProxyFilter
or one of NONE, ECHO. The option can be specified
multiple times, in which case the filters are invoked

one after another. If the not specified, the default
ECHOfilter is used.

Set the host name or IP address to listen on.

This must correspond to an interface of the
machine the TCPProxy is started on. The default is
| ocal host.

Set the port to listen on. The default is8001.

Specify acustom key store. Usually the built-in
keystore is good enough so - keyst or e does not
need to be specified.

Set the key store password. Only used if -
keyst or e isset. Optional for some key store

types.

Set the key store type. Only used if - keyst or e
isset. If not specified, the default value depends on
JSSE configuration but isusualy j ks.

Specify afile containing properties that are passed
on to thefilters.

Page 54

-renot ehost host

-renot eport port

-ti meout seconds

- htt pproxy host port

-htt psproxy host port

- ssli

- col our

-conmponent cl ass

- debug
2.5 Scripts

2.5.1 Scripts

The Grinder 3

Set the host name or port the TCPProxy should
connect to in port forwarding mode. The TCPProxy
startsin port forwarding mode if either -

r enot ehost or-renot eport isset. The
defaultis| ocal host .

Set the port the TCPProxy should connect to in
port forwarding mode. The TCPProxy startsin port
forwarding mode if either - r enot ehost or -
renot eport isset. Thedefaultis7001.

Set an idle timeout. Thisis how long the TCPProxy
will wait for arequest before timing out and freeing
thelocal port. The TCPProxy will not time out if
there are active connections.

Specify that output should be directed through
another HTTP/HTTPS proxy. This may help you
reach the Internet. This option is not supported in
port forwarding mode.

Specify that output should be directed through a
HTTPS proxy. Overrides any - ht t ppr oxy
setting. This option is not supported in port

forwarding mode.

Use SSL in port forwarding mode. This will
make both the TCPProxy's local socket and the
connections to the target server use SSL. The
default HTTP Proxy mode ignores this option and
awayslistensasan HTTP proxy and an HTTPS

Proxy.

Specify that a simple colour scheme should be
used to distinguish request streams from response
schemes. This uses terminal control codes that only
work on ANS| compliant terminals.

Register a component class with the filter
PicoContainer.

Make PicoContainer chatty.

This section describes The Grinder 3 scripting API. If you've used The Grinder 2 for
HTTP testing and you're not a programmer, you might be a bit daunted. Don't worry, its
just as easy to record and replay HTTP scripts with The Grinder 3.

2.5.1.1 Jython and Python

The default scripting engine is Jython - the Java implementation of Python. Python is
powerful, popular and easy on the eye. If you've not seen any Python before, take a look
at the script gallery (../g3/script-gallery.html) and Richard Perks tutorial (../g3/tutorial-

Page 55

../g3/script-gallery.html
../g3/tutorial-perks.html

The Grinder 3

perks.html) to get ataste of what itslike. There are plenty of resources on the web, here
are afew of them to get you started:

* The Jython home page (http://www.jython.org/)
» The Python language web site (http://www.python.org/)
e Ten Python pitfalls (http://zephyrfal con.org/labs/python_pitfalls.html)

| recommend the Jython Essentials (http://www.amazon.com/exec/obidos/tg/
detail/-/0596002475/qid%3D1044795121/103-7145719-3118225) book; you can read the
introductory chapter (http://www.oreilly.com/catal og/jythoness/chapter/ch01.html) for
free.

Alternative languages

The Grinder 3.6 and later support test scripts written in Clojure (../g3/
tcpproxy.html#clojure-script) .

Ryan Gardner has written an add-on script engine for Groovy (http://code.google.com/p/
grinder-maven-plugin) .

2.5.1.2 Jython scripting

Script structure

Jython scripts must conform to afew conventions in order to work with The Grinder
framework. I'll lay the rules out in fairly dry terms before proceeding with an example.
Don't worry if this makes no sense to you at first, the examples are much easier to
comprehend.

1. Scriptsmust defineaclasscalled Test Runner

When aworker process starts up it runs the test script once. The test script must
defineaclass called Test Runner . The Grinder engine then creates an instance of
Test Runner for each worker thread. A thread's TestRunner instance can be used to
store information specific to that thread.

Although recommended, strictly Test Runner doesn't need to be aclass. See the Hello
World with Functions (../g3/script-gallery.html#helloworl dfunctions.py) example.

2. TheTest Runner instance must be callable

A Python object iscalableif it definesa___cal | __ method. Each worker
thread performs a number of runs of the test script, as configured by the property
gri nder. runs. For each run, the worker thread callsits Test Runner ; thusthe
__call __ method can be thought of as the definition of arun.

3. Thetest script can access servicesthrough thegri nder object

The engine makes an object called gr i nder available for the script to
import. It can also be imported by any modules that the script calls. Thisisan
instance of the Grinder.ScriptContext (.././g3/script-javadoc/net/grinder/script/
Grinder.ScriptContext.html) class and provides access to context information (such as
the worker thread 1D) and services (such as logging and statistics).

4. Thescript filenamemust end in . py

The file name suffix is used to identify Jython scripts.

Page 56

http://www.jython.org/
http://www.python.org/
http://zephyrfalcon.org/labs/python_pitfalls.html
http://www.amazon.com/exec/obidos/tg/detail/-/0596002475/qid%3D1044795121/103-7145719-3118225
http://www.oreilly.com/catalog/jythoness/chapter/ch01.html
../g3/tcpproxy.html#clojure-script
http://code.google.com/p/grinder-maven-plugin
../g3/script-gallery.html#helloworldfunctions.py
../g3/script-gallery.html#helloworldfunctions.py
.././g3/script-javadoc/net/grinder/script/Grinder.ScriptContext.html

The Grinder 3

Canonical test script structure

Thisis an example of a script that conforms to the rules above. It doesn't do very much -
every run will log Hello World to the worker process |og.

fromnet.grinder.script.Ginder inport grinder

An instance of this class is created for every thread.
cl ass Test Runner:
This nethod is called for every run.
def __call__(self):
Per thread scripting goes here.
grinder.logger.info("Hello Wrld")

Automatically generating scripts

If you are creating a script for awebsite or web application, you can use the TCPProxy
(../g3/tcpproxy.htmI#HTTPPIuginT CPProxyFilter) to generate an HT TPPlugin script
suitable for use with The Grinder.

2.5.1.3 Tests

Although our simple test script can be used with The Grinder framework and can easily
be started in many times in many worker processes on many machines, it doesn't report
any statistics. For this we need to create sometests. A Test (.././g3/script-javadoc/net/
grinder/script/Test.ntml) has a unique test number and description. If you are using the
console (../g2/console.html) , it will update automatically to display new Test sasthey
are created.

Let'sadd aTest to our script.

fromnet.grinder.script inport Test
fromnet.grinder.script.Ginder inport grinder

Create a Test with a test nunber and a description.
testl = Test(1, "Log nethod")

cl ass Test Runner:
def _ _call__(self):
grinder.logger.info("Hello World")

Here we have created asingle Test with the test number 1 and the description Log
method. Note how we import thegr i nder object and the Test classinasimilar
manner to Java

Now the console knows about our Test , but we're still not using it to record anything.
Let'srecord how long our gr i nder . | ogger . i nf o method takes to execute.

Test . r ecor d adds the appropriate instrumentation code to the byte code of method.
The time taken and the number of callswill be recorded and reported to the console.

fromnet.grinder.script inport Test
fromnet.grinder.script.Ginder inport grinder

testl = Test(1, "Log nethod")

Instrunment the info() nethod with our Test.
testl.record(grinder.|ogger.info)

cl ass Test Runner:
def __call__(self):
grinder.logger.info("Hello World")

Page 57

../g3/tcpproxy.html#HTTPPluginTCPProxyFilter
.././g3/script-javadoc/net/grinder/script/Test.html
../g2/console.html

The Grinder 3

Thisisacomplete test script that works within The Grinder framework and reports results
to the console.

Y ou're not restricted to instrument method calls. In fact, it's more common to instrument
objects. Here's an example using The Grinder's HTTP plug-in (../g3/http-plugin.html) .

A sinple exanpl e using the HTTP plugin that shows the retrieval of a
single page via HTTP.

fromnet.grinder.script inport Test
fromnet.grinder.script.Ginder inport grinder
fromnet.grinder.plugin.http inport HTTPRequest

testl = Test(1, "Request resource")
request1l = HITPRequest ()
testl.record(requestl)

cl ass Test Runner:
def __call__(self):
result = requestl. GET("http://]ocal host: 7001/")

2.5.1.4 The Grinder script API

With what you've seen already you have the full power of Jython at your finger tips. You
can use practically any Java or Python code in your test scripts.

The Grinder script API can be used to access services from The Grinder. The Javadoc
(.././g3/script-javadoc/index.html) contains full information on all the packages, classes
and interfaces that make up the core API, as well as additional packages added by the
shipped plug-ins. This section provides overview information on various areas of the API.
See also the HTTP plugin documentation (../g3/http-plugin.html) .

Thenet.grinder.script (.././g3/script-javadoc/net/grinder/script/package-
summary.html) package

An instance of Grinder.ScriptContext (.././g3/script-javadoc/net/grinder/script/
Grinder.ScriptContext.html) called gr i nder isautomatically available to all scripts.
This object provides access to context information and acts a starting point for
accessing other services. The instance can be explicitly imported from other Python
modulesasnet . gri nder. scri pt. Ginder.grinder.

We have described the use of the Test (.././g3/script-javadoc/net/grinder/script/
Test.html) class above.

The Statistics (.././g3/script-javadoc/net/grinder/script/Statistics.html) interface allows
scripts to query and modify statistics (../g3/statistics.html) , provide custom statistics,
and register additional views of standard and custom statistics.

The net.grinder.common (.././g3/script-javadoc/net/grinder/common/package-
summary.html) package

This package contains common interfaces and utility classes that are used throughout
The Grinder and that are also useful to scripts.

2.5.1.5 Working directory

When the script has been distributed using the console, the working directory (CWD) of
the worker process will be the local agent's cache of the distributed files. This allows the
script to conveniently refer to other distributed files using relative paths.

Otherwise, the working directory of the worker process will be that of the agent process
that started it.

Page 58

../g3/http-plugin.html
.././g3/script-javadoc/index.html
../g3/http-plugin.html
.././g3/script-javadoc/net/grinder/script/package-summary.html
.././g3/script-javadoc/net/grinder/script/Grinder.ScriptContext.html
.././g3/script-javadoc/net/grinder/script/Test.html
.././g3/script-javadoc/net/grinder/script/Statistics.html
../g3/statistics.html
.././g3/script-javadoc/net/grinder/common/package-summary.html

The Grinder 3

Distributing Java code

You can add Javaj ar or. cl ass filesto your console distribution directory and use
the file distribution mechanism to push the code to the agent's cache. Use relative paths
andthegri nder.jvm cl asspat h property to add the files to the worker process
CLASSPATH.

For example, you might distribute the following files

grinder.properties

nyscri pt. py
lib/nyfile.jar

wheregri nder. properti es contains:

grinder.script=nyscript.py
grinder.jvmclasspath=lib/nyfile.jar

2.5.2 Jython

2.5.2.1 Scripts

The core requirements for Jython scripts can be found in the introduction (../g3/
scripts.html#j ython-scripts) .

Importing modules

Scripts can use code packaged in Jython modules (http://docs.python.org/tutorial/
modules.html) . The Grinder adds both the directory containing the script and the working
directory (../g3/scripts.html#cwd) of the worker process (which may be the same) to the
Python path, allowing modules to be imported from these locations.

If you want to load modules from other locations, you should adjust the Python path.
One way to do thisisto set the JY THONPATH (http://www.jython.org/docs/using/
cmdline.html#environment-variables) environment variable.

2.5.2.2 The Jython distribution and installation

The Grinder 3.11 includes Jython 2.5.3 and the Jython implementation of the standard
Python library.

Setting the Jython cache directory

A Jython bug prevents the correct calculation of a default cache directory. If you

don't have a Jython cache directory, wild card imports of Java packages(e.g. from
java.util inport *)may notwork, The Grinder will take alittle longer to start,
and ugly error messages will be displayed:

28/09/08 17:57:11 (agent): worker paston0l1l-0 started
sys- package-ngr: can't create package cache dir, '/hone/performance/lib/jython.jar/
cachedi r/ packages'

Y ou can specify the cache directory either by setting the pyt hon. hone as described
below (in which case the directory will that specified in the Python registry), or by setting
the Java property pyt hon. cachedi r inyour properties (../g3/properties.ntml) file:

Page 59

../g3/scripts.html#jython-scripts
http://docs.python.org/tutorial/modules.html
../g3/scripts.html#cwd
../g3/scripts.html#cwd
http://www.jython.org/docs/using/cmdline.html#environment-variables
../g3/properties.html

The Grinder 3

grinder.jvmargunents = -Dpython. cachedir=/tnp/nycache
or on the command line:

java -Dgrinder.jvm argunents = -Dpython. cachedir=/tnp/nycache net.grinder.Ginder

Youcanonly setgri nder.jvm ar gunent s once, soif you want to set both the
cache directory and pyt hon. hone either use the registry, or do this:

grinder.jvm argunents = -Dpython. hone=/opt/jython/jython2.5.3 -Dpython. cachedir=/tnp/
mycache

Using an alternative Jython version.

If you want use adifferent version of Jython, you should placeit at the start of the
classpath used to start the agent process.

If you don't use its standalone option, the Jython installer will create a new directory
containing the Jython jar file, the library modules, examples, and documentation. To use
the standard library modules, you need to tell The Grinder the location of this directory.
Y ou can do this either by adding the following to your properties (../g3/properties.html)
file:

grinder.jvmargunents = -Dpython. hone=/opt/jython/jython2.5.3

or on the agent command line:

java -Dgrinder.jvm ar gunent s=- Dpyt hon. hone=/ opt/jython/jython2.5.3 net.grinder.Ginder

In both cases, change/ opt / j yt hon/ j yt hon2. 5. 3 to the directory in which you
installed Jython. Y ou must install Jython on all of the agent machines. If the version of
Jython is different to that included with The Grinder (2.5.3), you should also add the
installation'sj yt hon. j ar to the start of the CLASSPATH used to launch the agent.

Jython picks up user and site preferences from several sources (see http://
www.jython.org/docs/registry.html). A side effect of setting pyt hon. horme isthat the
installed registry file will be used.

2.5.3 Clojure

The Grinder 3.6 and later optionally support Clojure (http://clojure.org/) as an aternative
language for test scripts.

2.5.3.1 How to use Clojure

Install Clojure and add the path to theinstallation'scl oj ur e- x. x. x. j ar filetothe
start of the CLASSPATH you use for The Grinder agent processes.

Page 60

../g3/properties.html
http://www.jython.org/docs/registry.html
http://www.jython.org/docs/registry.html
http://clojure.org/

The Grinder 3

2.5.3.2 Clojure scripting

Script structure

Clojure scripts must conform to afew conventionsin order to work with The Grinder
framework.

1. Scriptsmust return afunction that createstest runner functions

When aworker process starts, it runs the test script once. The test script should return
afactory function that creates and returns atest runner function.

Each worker thread calls the factory function to create atest runner function. Worker
threads perform anumber of runs of the test script, as configured by the property
gri nder . r uns. For each run, the worker thread calls its test runner function; thus
the test runner function can be thought of as the definition of arun.

2. Thetest script can access servicesthrough thegr i nder object

The engine makes an object called gr i nder available for the script to
import. It can also be imported by any modules that the script calls. Thisisan
instance of the Grinder.ScriptContext (.././g3/script-javadoc/net/grinder/script/
Grinder.ScriptContext.html) class and provides access to context information (such as
the worker thread 1D) and services (such as logging and statistics).

3. Thescript filenamemustendin. cl j

The file name suffix is used to identify Clojure scripts.

Canonical test script structure

Thisis an example of a script that conforms to the rules above. It doesn't do very much -
every run will log Hello World to the output log.

;; helloworld. clj
(let [grinder net.grinder.script.Ginder/grinder]

;; The script returns a factory function, called once by each worker
;; thread.

(fn []

;; The factory function returns test runner function.
(fn []
(do
(.. grinder (getLogger) (info "Hello Wrld"))))))

Recording an HTTP script

Y ou can use the TCPProxy to record a Clojure script (../g3/tcpproxy.html#clojure-script)
from a browser session.

2.5.4 Script Instrumentation

2.5.4.1 About Instrumentation

The Grinder alows a script to mark the parts of the script code that should be recorded.
Thisis called instrumentation.

Codeisinstrumented for a Test (../g3/scripts.html#tests) . When instrumented code
iscaled, the test's statistics are updated. The standard statistics record the time taken,
number of calls, and number of errors. Advanced scripts can add additional custom
statistics (../g3/statistics.html) .

Page 61

.././g3/script-javadoc/net/grinder/script/Grinder.ScriptContext.html
../g3/tcpproxy.html#clojure-script
../g3/scripts.html#tests
../g3/statistics.html
../g3/statistics.html

The Grinder 3

We've seen an example of using instrumentation in the introduction (../g3/
scripts.html#tests) . To recap, you instrument an object by usingaTest to modify the
Java byte code of the object. Here's the example code again.

fromnet.grinder.script inmport Test
fromnet.grinder.script.Ginder inport grinder

testl = Test(1l, "Log method")

Instrunment the info() method with our Test.
testl.record(grinder.|ogger.info)

cl ass Test Runner:
def __call__(self):
log("Hello World")

Each time "Hello World" iswritten to the log file, the time taken will be recorded by The
Grinder.

Instrumentation can be nested. For example, you might instrument a method with Test

1, and the method code might call two HTTPRequest sthat are instrumented with Test
2 and Test 3. The code instrumented by Tests 2 and 3 is nested within the Test 1 code.
The time recorded against the Test 1 will be greater than the total time recorded for Tests
2 and 3. It will aso include any time spent in the function itself, for example callsto

gri nder. sl eep().

2.5.4.2 Supported targets
A wider range of target objects can be instrumented.

Javainstance Each call to anon-static method is recorded,
including calls to super classes methods.
Instances of arrays and primitive types cannot be
instrumented.

Javaclass Each call made to a constructor or a static method
declared by the classis recorded. Calls of non-
static methods or static methods defined by super
classes are not recorded.

Jython instance Each call to an instance method is recorded.
Jython function or method Each call of the function or method is recorded.
Jython class Each call made to the Jython class (i.e. constructor

calls) isrecorded.
Clojure function Each call of the function is recorded.

JVM classes loaded in the bootstrap classloader, and classes from The Grinder's
net. gri nder. engi ne. pr ocess implementation package cannot be instrumented.

2.5.4.3 Selective instrumentation

The Grinder 3.7 adds an overloaded version of record (.././g3/script-javadoc/net/grinder/
script/Test.html#record(java.lang.Object, net.grinder.script. Test.InstrumentationFilter))
that allows the target object to be instrumented selectively.

Selective instrumentation is useful for instrumenting instances of the HT TPRequest
('.././g3/script-javadoc/net/grinder/plugin/http/HT TPRequest.html) class, which has

Page 62

../g3/scripts.html#tests
.././g3/script-javadoc/net/grinder/script/Test.html#record(java.lang.Object, net.grinder.script.Test.InstrumentationFilter)
.././g3/script-javadoc/net/grinder/plugin/http/HTTPRequest.html

The Grinder 3

ancillary methods that typically need to be called without affecting test statistics. Here's
an example of how to use selective instrumentation.

fromnet.grinder.script inport Test
fromnet.grinder.plugin.http inmport HTTPRequest

test = Test(1, "nmy test")
cl ass Get AndPost Filter(Test.InstrunentationFilter):
def matches(sel f, method):

return nmethod. nane in ["GET", "POST"]

request = HTTPRequest (url ="http://grinder.sourceforge.net")
test.record(request, GetAndPostFilter())

cl ass Test Runner:
def __call__(self):
GET() is instrumented, so call statistics are reported.
request. GET()
getWrl () is not instrumented, no call statistics are reported.
print "Called %" % request.url

2.5.4.4 Troubleshooting Instrumentation

The instrumentation relises on Dynamic Code Redefinition, a Java 6 feature.

When you start an agent process, you will normally see aline like thisin the worker
process log file (../g3/getting-started.html#Output) .

16/ 11/ 09 08:02: 18 (process paston01-0): instrunentati on agents:
byte code transforming instrumenter for Jython 2.1/2.2; byte code transformng
instrunenter for Java

If you see the following line, you should check you are using a Java 6 JVM.

16/ 11/ 09 07:59: 42 (process paston01-0): instrumentation agents: NO | NSTRUVMENTER
COULD BE LOADED

2.5.5 Coordination

Most scripts are written so that their worker threads operate independently of

each other. For web load generation, aworker thread corresponds to the actions

of asingle, independent user. Worker threads can generate unique data using
methods such as getProcessNumber () (.././g3/script-javadoc/net/grinder/script/
Grinder.ScriptContext.html#getProcessNumber()) and getThreadNumber() (.././g3/
script-javadoc/net/grinder/script/Grinder. ScriptContext.html#get ThreadNumber()) .
Coordination of activity within aworker process can use standard Java or Jython
synchronisation APIs.

Occasionally a script needs to coordinate worker threads across multiple worker
processes. The Grinder supports this requirement through a distributed synchronisation
feature, barriers.

2.5.5.1 Barriers

A barrier (.././g3/script-javadoc/net/grinder/script/Barrier.ntml) is a pre-arranged
synchronisation point at which worker threads will wait for each other. There can be
many synchronisation points; each uses a unique barrier name.

Page 63

../g3/getting-started.html#Output
../g3/getting-started.html#Output
.././g3/script-javadoc/net/grinder/script/Grinder.ScriptContext.html#getProcessNumber()
.././g3/script-javadoc/net/grinder/script/Grinder.ScriptContext.html#getThreadNumber()
.././g3/script-javadoc/net/grinder/script/Barrier.html

The Grinder 3

Each worker thread that wants to participate in a synchronisation point should create a
barrier with the given name using the ScriptContext (.././g3/script-javadoc/net/grinder/
script/Grinder.ScriptContext.html#barrier(java.lang.String)) . The worker thread can wait
for al other threads that have created barriers with a particular name by calling await

(.././g3/script-javadoc/net/grinder/script/Barrier.html#await()) .

Barriersare usualy created inthe Test Runner. __init__ constructor to ensure

every worker thread has created its barriers before any of the threads try to wait for the
barrier.

Sample script

fromnet.grinder.script.Ginder inport grinder

cl ass Test Runner:
def __init__(self):
Each worker thread joins the barrier.
sel f. phaselConpl eteBarrier = grinder.barrier("Phase 1")

def __call__(self):
... Phase 1 actions.

Wait for all worker threads to reach this point before proceeding.
sel f. phaselConpl eteBarrier.await()

... Further actions.

Barrier scope

Distributed barriers that allow coordination across worker processes require that the
worker processes are started with the console.

Barriers are not shared across worker processes that are not started using the console,
even if they are started by the same agent. In this case, each barrier will only provide
coordination locally, between the worker threads of aworker process.

Barrier life cycle

A worker thread can reuse a barrier by calling await (.././g3/script-javadoc/net/grinder/
script/Barrier.html#await()) again. The call will block until the other workers using
barriers with the same name dl call awai t .

A worker thread can wait for alimited time by using one of the versions of awai t

that allow atimeout to be specified. If the timeout elapses, the barrier instance will be
cancelled and become invalid. Other worker threads will no longer wait for the cancelled
barrier. A new barrier can be created if required.

Worker threads can remove themselves from a synchronisation point by cancelling (.././
g3/script-javadoc/net/grinder/script/Barrier.html#cancel () a barrier directly.

2.5.6 Script Gallery

This page contains examples of Jython scripts and script snippets that can be used

with The Grinder 3. The scripts can also be found in the exanpl es directory of the
distribution. To use one of these scripts, you'll needto set upagri nder . properties
file. Please also make sure you are using the latest version of The Grinder 3.

If you're new to Python, it might help to know that that blocks are delimited by lexical
indentation.

Page 64

.././g3/script-javadoc/net/grinder/script/Grinder.ScriptContext.html#barrier(java.lang.String)
.././g3/script-javadoc/net/grinder/script/Barrier.html#await()
.././g3/script-javadoc/net/grinder/script/Barrier.html#await()
.././g3/script-javadoc/net/grinder/script/Barrier.html#cancel()

The Grinder 3

The scripts make use of The Grinder script API. Thegr i nder object in the scripts
isaninstance of Scri pt Cont ext through which the script can obtain contextual
information (such as the worker process ID) and services (such as logging).

If you have a script that you would like to like to see to this page, please send it to
grinder-use.

2.5.6.1 Hello World

A mininmal script that tests The Grinder logging facility.

This script shows the recommended style for scripts, with a

Test Runner class. The script is executed just once by each worker
process and defines the TestRunner class. The Ginder creates an
instance of TestRunner for each worker thread, and repeatedly calls
the instance for each run of that thread.

H O HH O HH

fromnet.grinder.script.Ginder inport grinder
fromnet.grinder.script inport Test

A shorter alias for the grinder.logger.info() nethod.
log = grinder.logger.info

Create a Test with a test nunber and a description. The test will be
autonatically registered with The Ginder console if you are using
#it.

testl = Test(1l, "Log nethod")

Instrunent the info() method with our Test.
testl.record(l og)

A TestRunner instance is created for each thread. It can be used to
store thread-specific data.
cl ass Test Runner:

This nethod is called for every run.
def __call__(self):
| og("Hello World")

2.5.6.2 Simple HTTP example

A sinple exanple using the HTTP plugin that shows the retrieval of a
single page via HTTP. The resulting page is witten to a file.

#

More conplex HTTP scripts are best created with the TCPProxy.

fromnet.grinder.script.Ginder inport grinder
fromnet.grinder.script inport Test
fromnet.grinder.plugin.http inport HTTPRequest

testl = Test(1, "Request resource")
request1l = HITPRequest ()
testl.record(requestl)

cl ass Test Runner:
def _ _call__(self):
result = requestl. GET("http://]ocal host: 7001/")

result is a HTTPA i ent. HTTPResul t. W get the nessage body
using the getText() nethod.
writeToFile(result.text)

Utility nethod that wites the given string to a uniquely naned file.
def witeToFile(text):
filenanme = "9%-page-%. html " % (grinder. processNane, grinder.runNunber)

file = open(fil enane, "w')

Page 65

The Grinder 3

print >> file, text
file.close()

2.5.6.3 Recording many HTTP interactions as one test

This exanpl e shows how many HTTP interactions can be grouped as a
single test by wapping themin a function.

fromnet.grinder.script.Ginder inport grinder
fromnet.grinder.script inport Test
fromnet.grinder.plugin.http i nport HTTPRequest
fromHTTPO i ent inport NVPair

We declare a default URL for the HTTPRequest.
request = HTTPRequest (url = "http://]ocal host: 7001")

def pagel():
request. GET('/consol e')
request. GET(' / consol e/ | ogi n/ Logi nForm j sp')
request. GET(' / consol e/ | ogi n/ bea_l ogo. gif')

Test (1, "First page").record(pagel)

cl ass Test Runner:
def _ _call__(self):

pagel()

2.5.6.4 HTTP/J2EE form based authentication

A nmore conpl ex HTTP exanpl e based on an authentication conversation
with the server. This script denonstrates how to follow different
pat hs based on a response returned by the server and how to post
HTTP formdata to a server.

The J2EE Servl et specification defines a common nodel for form based
aut henti cati on. When unauthenticated users try to access a protected
resource, they are challenged with a | ogon page. The | ogon page
contains a formthat POSTs username and password fields to a special
j _security_check page.

HHHHHHHHHHR

fromnet.grinder.script.Ginder inport grinder
fromnet.grinder.script inmport Test
fromnet.grinder.plugin.http inmport HTTPRequest
fromHTTPCl i ent inport NVPair

prot ect edResourceTest = Test(1, "Request resource")
aut henticationTest = Test(2, "POST to j_security_check")

request = HTTPRequest (url="http://1 ocal host: 7001/ consol e")
prot ect edResour ceTest . recor d(request)

cl ass Test Runner:
def __call__(self):
result = request. GET()
result = maybeAuthenticate(result)

result = request. GET()

Function that checks the passed HTTPResult to see whether
authentication is necessary. If it is, performthe authentication
and record performance information against Test 2.
def maybeAut henticate(l astResult):
if lastResult.statusCode == 401 \
or lastResult.text.find("j_security_check") != -1:

grinder. | ogger.info("Challenged, authenticating")

aut henti cati onFornData = (NVPair("j_usernane", "weblogic"),
NVPai r (") _password", "webl ogic"),)

Page 66

The Grinder 3

request = HTTPRequest (url ="%/j _security_check" %Il astResult.original URl)
aut henti cati onTest. record(request)

return request.POST(aut henti cati onFornDat a)

2.5.6.5 HTTP digest authentication

Basically del egates to HTITPO ient's support for digest
aut henti cati on.

Copyright (C) 2008 Matt Moran
Copyright (C) 2008 Philip Aston
Di stributed under the terns of The Ginder license.

HHHHHH

fromnet.grinder.plugin.http inport HTTPPI ugi nContr ol
fromHTTPO i ent inport Authorizationlnfo

Enable HTTPO ient's authorisation nodul e.
HTTPPI ugi nCont r ol . get Connect i onDef aul t s() . useAut hori zati onvbdule = 1

testl = Test(1, "Request resource"
request1l = HITPRequest ()
testl.record(requestl)

cl ass Test Runner:
def _ _call__(self):
t hr eadCont ext Gbj ect = HTTPPI ugi nControl . get Thr eadHTTPCO i ent Cont ext ()

Set the authorisation details for this worker thread.
Aut hori zat i onl nf 0. addDi gest Aut hori zati on(
“www. my. cont', 80, "myrealnt, "myuserid", "nypw', threadContextObject)

result = requestl. GET(' http://ww ny. coniresource')

2.5.6.6 HTTP cookies

HTTP exanpl e whi ch shows how to access HTTP cooki es.

The HTTPC ient library handl es cookie interaction and renoves the
cooki e headers fromresponses. |If you want to access these cooki es,
one way is to define your own CookiePolicyHandl er. This script defines
a Cooki ePol i cyHandl er that sinply logs all cookies that are sent or
recei ved.

The script al so denonstrates how to query what cooki es are cached for
the current thread, and how add and renove cookies fromthe cache.

If you really want direct control over the cookie headers, you
can di sable the automatic cookie handling with:
HTTPPI ugi nCont r ol . get Connecti onDef aul t s(). useCooki es = 0

HHHFHHHFHH R

fromnet.grinder.script.Ginder inport grinder
fromnet.grinder.script inmport Test

fromnet.grinder.plugin.http import HTTPRequest, HTTPPI ugi nContr ol
fromHTTPC i ent inmport Cookie, CookieMdul e, CookiePolicyHandl er
fromjava.util inmport Date

log = grinder.logger.info

Set up a cookie handler to log all cookies that are sent and received.
cl ass MyCooki ePol i cyHandl er (Cooki ePol i cyHandl er) :
def accept Cooki e(sel f, cookie, request, response):
| og("accept cookie: %" % cookie)
return 1

def sendCooki e(sel f, cookie, request):
| og("send cookie: %" % cookie)
return 1

Page 67

The Grinder 3

Cooki eModul e. set Cooki ePol i cyHandl er (MyCooki ePol i cyHandl er ())

testl = Test(1l, "Request resource")
request1l = HTTPRequest ()
testl.record(requestl)

cl ass Test Runner:
def __call__(self):
The cache of cookies for each worker thread will be reset at
the start of each run.

result = requestl. GET("http://local host: 7001/ consol e/ ?request 1")

If the first response set any cookies for the domain,
they willl be sent back with this request.
result2 = requestl. GET("http://Iocal host: 7001/ consol e/ ?request 2")

Now let's add a new cooki e.
t hreadCont ext = HTTPPI ugi nControl . get Thr eadHTTPO i ent Cont ext ()

expiryDate = Date()
expirybDate.year += 10

cooki e = Cooki e("key", "value","local host", "/", expiryDate, 0)
Cooki eMbdul e. addCooki e(cooki e, threadContext)
result = requestl. GET("http://local host: 7001/ consol e/ ?request 3")

Get all cookies for the current thread and wite themto the |og
cooki es = Cooki eModul e. | i st Al | Cooki es(threadCont ext)
for ¢ in cookies: log("retrieved cookie: %" %c)

Renove any cookie that isn't ours.
for ¢ in cookies:
if ¢ !'= cookie: CookieMbdul e.renpveCooki e(c, threadContext)

result = requestl. GET("http://local host: 7001/ consol e/ ?request 4")

2.5.6.7 HTTP multipart form submission

This script uses the HTTPO i ent. Codecs class to post itself to the
server as a nulti-part form Thanks to Marc Gemis.

fromnet.grinder.script.Ginder inport grinder
fromnet.grinder.script inport Test
fromnet.grinder.plugin.http i nport HTTPRequest
fromHTTPO i ent inport Codecs, NVPair
fromjarray inport zeros

testl = Test(1, "Upload Inmage")
request1l = HTTPRequest (url ="http://| ocal host: 7001/")
testl.record(requestl)

cl ass Test Runner:
def _ _call__(self):

files = (NVPair("self", "formpy"),)
paranmeters = (NVPair ("run nunber", str(grinder.runNunber)),)

This is the Jython way of creating an NVPair[] Java array
with one el ement.
headers = zeros(1, NVPair)

Create a nulti-part formencoded byte array.
data = Codecs. npFor nDat aEncode(paraneters, files, headers)
grinder. | ogger.output("Content type set to %" % headers[0]. val ue)

Page 68

The Grinder 3

Call the version of POST that takes a byte array.
result = requestl. POST("/upl oad", data, headers)

2.5.6.8 Enterprise Java Beans

Exercise a stateful session EJB fromthe Oracle WbLogic Server
exanpl es. Additionally this script denmonstrates the use of the
Scri pt Context sleep(), getThreadld() and get RunNunmber () nethods.

Before running this exanple you will need to add the EJB client and
the WebLogic classes to your CLASSPATH.

HHHHHH

fromjava.lang inport String

fromjava.util inport Properties, Random

from javax. nam ng inport Context,Initial Context
fromnet.grinder.script.Ginder inport grinder
fromnet.grinder.script inport Test

from webl ogic.jndi inport W.Initial ContextFactory

tests = {
"home" : Test(1, "TraderHone"),
"trade" : Test(2, "Trader buy/sell"),
"query" : Test(3, "Trader getBal ance"),

Initial context |ookup for EJB hone.
p = Properties()
p[Context. | NI TI AL_CONTEXT_FACTORY] = W.I niti al Cont ext Fact ory. nane

home = Initial Context(p).|ookup("ejb20-stateful Sessi on-Trader Hone")
tests["hone"].record(hone)

random = Randomn()

cl ass Test Runner:
def call __(self):

log = grinder.logger.info

trader = hone.create()
tests["trade"].record(trader.sell)
tests["trade"].record(trader. buy)
tests["query"].record(trader.getBal ance)

stocksToSel | = { "BEAS' : 100, "MSFT" : 999 }

for stock, anmount in stocksToSell.itens():
tradeResult = trader.sell ("John", stock, anount)
log("Result of trader.sell(): %" %tradeResult)

grinder. sl eep(100) # 1dle a while

stocksToBuy = { "BEAS' : abs(randomnextlnt()) % 1000 }
for stock, anmount in stocksToBuy.itens():
tradeResult = trader. buy("Phil", stock, anount)
log("Result of trader.buy(): %" %tradeResult)

bal ance = trader. getBal ance()
I og("Bal ance is $%2f" % bal ance)

trader.renove() # We don't record the renove() as a test

2.5.6.9 Grinding a database with JDBC

Some sinpl e database playing wth JDBC

#

To run this, set the Oracle login details appropriately and add the
Oracle thin driver classes to your CLASSPATH.

Page 69

The Grinder 3

fromjava.sql inport DriverManager
fromnet.grinder.script.Ginder inport grinder
fromnet.grinder.script inport Test
fromoracle.jdbc inport O acleDriver

testl
test2

Test (1, "Database insert")
Test (2, "Database query")

Load the Oracle JDBC driver.
Driver Manager.regi sterDriver(Oacl eDriver())

def get Connection():
return Driver Manager. get Connecti on(

"jdbc:oracle:thin: @27.0.0.1: 1521: nysid", "ws", "ws")

def ensureC osed(object):
try: object.close()
except: pass

One tine initialisation that cleans out old data.
connection = get Connection()
statenment = connection. createStatenent()

try:
except :

st at ement . execute("drop table grinder_fun")

pass

statement. execute("create table grinder_fun(thread nunber, run nunber)")

ensur eC osed(st at enent)
ensur eCl osed(connecti on)

cl ass Test Runner:
def __call__(self):

connection = None
insert Statenent = None
querySt at enent = None

try:
connection = get Connection()
insertStatenent = connection.createStatenent ()

testl.record(insertStatenent)
insertStatenent. execute("insert into grinder_fun values(%, %)" %
(grinder.threadNunber, grinder.runNunber))

test2.record(queryStatenent)
querySt at enent . execut e("sel ect * from grinder_fun where thread=%" %
grinder. t hreadNunber)

finally:
ensureC osed(i nsert Statenent)
ensur ed osed(querySt at enent)
ensur eCl osed(connecti on)

2.5.6.10 Simple HTTP Web Service

HHFHHFHHFHHFHHF R

Calls an Amazon.com web service to obtain information about a book.

To run this script you nust install the standard Python xm nodul e.
Here's one way to do that:

1.
2.

3.

Downl oad and install Jython 2.1

Add the following line to grinder.properties (changing the path appropriately):
grinder.jvm ar gunment s=- Dpyt hon. home=c: /j ython-2.1

Add Jakarta Xerces (or one of the other parsers supported by

the xml nodule) to your CLASSPATH.

You may al so need to obtain your own Amazon.com web service |icense
and replace the script text <insert |license key here> with the
l'icense key, although currently that doesn't appear to be necessary.

Page 70

The Grinder 3

fromnet.grinder.script.Ginder inport grinder
fromnet.grinder.script inport Test
fromnet.grinder.plugin.http inport HTTPRequest
fromHTTPCl i ent inport NVPair

fromxm .dominport javadom

fromorg.xm .sax inport |nputSource

bookDet ai | sTest = Test (1, "Get book details from Amazon")
parser = javadom Xer cesDonl npl enent ati on()

cl ass Test Runner:
def __call__(self):
if grinder.runNunber > 0 or grinder.threadNunber > O:
raise RuntineError("Use limted to one thread, one run;
"see Amazon Wb Services terns and conditions")

request = HTTPRequest (url="http://xm .amazon. com onca/ xm ")
bookDet ai | sTest . record(request)

paraneters = (
NVPair("v", "1.0"),
NVPai r("f", "xm"),
NVPair("t", "webservices-20"),
NVPair("dev-t", "<insert l|license key here>"),
NVPai r ("type", "heavy"),
NVPai r (" Asi nSear ch", "1904284000"),
)

bytes = request. POST(paraneters).input Stream

Parse results
docunent = parser. bui |l dDocunment Url (| nput Sour ce(bytes))

result = {}
for details in docunent.getEl enent sByTagNane("Details"):
for detail Nane in ("ProductNane", "Sal esRank", "ListPrice"):
resul t[detail Nane] = details. getEl enent sByTagNane(
detai |l Nane)[0] . firstChild. nodeVal ue

grinder.logger.info(str(result))

2.5.6.11 JAX-RPC Web Service

Exercise a basic Wb Service fromthe BEA WbLogic Server 7.0

exanpl es.
#
Before running this exanple you will need to add the generated

JAX-RPC client classes and webserviceclient.jar to your CLASSPATH.

fromnet.grinder.script.Ginder inport grinder
fromnet.grinder.script inport Test

from exanpl es. webser vi ces. basi c. javacl ass inport Hel | oWorld_I npl
fromjava.lang inport System

System set Property("javax.xm .rpc. Servi ceFactory",
"webl ogi c. webservi ce. core. rpc. Servi ceFactoryl npl ")

webService = Hel loworld_Inpl ("http://I1ocal host: 7001/ basi c_j avacl ass/ Hel | owor | d?WSDL")

port = webService. getHel |l oWorl dPort ()
Test (1, "JAXP Port test").record(port)

cl ass Test Runner:
def _ _call__(self):
result = port.sayHello(grinder.threadNunber, grinder.grinderlD)
grinder.logger.info("Got '%'" % result)

Page 71

The Grinder 3

2.5.6.12 XML-RPC Web Service

A server should be running on the |ocal host. This script uses the
exanpl e from
http://xm rpc-c. sourceforge. net/xm rpc-howt o/ xm r pc- howt o-j ava- server. ht

Copyright (C) 2004 Sebastii¢¥n Fontana
Di stributed under the terns of The Ginder license.

HHHHHH

fromjava.util inport Vector

fromjava.lang inport Integer
fromnet.grinder.script.Ginder inport grinder
fromnet.grinder.script inport Test

from org. apache. xm rpc inport Xm Rpcd i ent

testl = Test(1, "XM-RPC exanple test")
server_url = "http://] ocal host: 8080/ RPC2"

client = Xm RpcClient(server_url)
testl.record(client)

cl ass Test Runner:
def _ _call__(self):
parans = Vector ()
par ans. addEl enent (| nt eger (6))
par ans. addEl enent (| nt eger (3))

result = client.execute("sanple.sumAndDifference", parans)
sum = resul t. get ("sunl')

grinder. | ogger.info("SUM %" % sum

2.5.6.13 Hello World, with functions

The Hello Wrld exanple re-witten using functions.

In previous exanpl es we've defined TestRRunner as a class; calling
the class creates an instance and calling that instance invokes its
_call__ method. This script is for the Luddites anpngst you and
shows how The Grinder engine is quite happy as long as the script
creates a callable thing called TestRRunner that can be called to
create another callable thing.

H o HHHH R

fromnet.grinder.script.Ginder inport grinder
fromnet.grinder.script inmport Test

testl = Test(1l, "Log method")
testl.record(grinder.|ogger.info)

def doRun():
grinder.logger.info("Hello Wrld")

def TestRunner():
return doRun

2.5.6.14 The script life cycle

A script that denonstrates how the various parts of a script and
their effects on worker threads.

H* H*

The "top level" of the script is called once for each worker
process. Performany one-off initialisation here. For exanple,
inmport all the nodul es, set up shared data structures, and declare
all the Test objects you will use.

H H HH

fromnet.grinder.script.Ginder inport grinder

Page 72

The Grinder 3

fromjava.lang i nport System

The total Nunber Of Runs variable is shared by all worker threads.
total NunberOf Runs = 0

An instance of the TestRunner class is created for each worker thread.
cl ass Test Runner:

There's a runsFor Thread variable for each worker thread. This
statenent specifies a class-wide initial val ue.
runsFor Thread = 0

The __init__ nethod is called once for each thread.

def __init__(self):
There's an initialisationTinme variable for each worker thread.
self.initialisationTine = SystemcurrentTineM11is()

grinder.logger.info("New thread started at time %" %
self.initialisationTine)

The __call__ nethod is called once for each test run perforned by
a worker thread.
def __call__(self):

We really should synchronise this access to the shared

total Nunber Of Runs variable. See JMS receiver exanple for how
to use the Python Condition class.

gl obal total Number O Runs

total Nunber Of Runs += 1

sel f.runsFor Thread += 1

grinder. | ogger.info(
"runsFor Thr ead=%, total Number Of Runs=%, initialisationTi me=%d" %
(sel f.runsFor Thread, total NunmberOf Runs, self.initialisationTine))

You can al so vary behavi our based on thread ID.
if grinder.threadNunber %2 ==
grinder.logger.info("l have an even thread ID. ")

Scripts can optionally define a _ del __ method. The Grinder
guarantees this will be called at shutdown once for each thread
1t is useful for closing resources (e.g. database connections)
that were created in __init__.
def __del _ (self):

grinder. | ogger.info("Thread shutting down")

2.5.6.15 Accessing test statistics

Exanpl es of using The Ginder statistics APl with standard
statistics.

fromnet.grinder.script.Ginder inport grinder
fromnet.grinder.script inport Test
fromnet.grinder.plugin.http i nport HTTPRequest

cl ass Test Runner:
def _ _call__(self):
request = HTTPRequest (url = "http://]ocal host: 7001")
Test (1, "Basic request").record(request)

Exanple 1. You can get the tine of the last test as follows.
result = request.GET("index. htm")

grinder.logger.info("The |last test took % mlliseconds" %

grinder.statistics.forlLastTest.tine)

Exanple 2. Nornally test results are reported autonatically
when the test returns. If you want to alter the statistics

Page 73

after a test has conpleted, you nust set delayReports =1 to
delay the reporting before performng the test. This only

affects the current worker thread.
grinder.statistics.delayReports =1

result = request. GET("index. htm ")

if grinder.statistics.forLastTest.time > 5:
We set success = 0 to mark the test as a failure. The test
time will be reported to the data | og, but not included
in the aggregate statistics sent to the console or the
summary tabl e.
grinder.statistics.forLastTest.success = 0

Wth del ayReports = 1 you can call report() to explicitly.
grinder.statistics.report()

You can also turn the automatic reporting back on.
grinder.statistics.delayReports =0

Exanple 3.
get ForCurrent Test () accesses statistics for the current test.
get For Last Test () accesses statistics for the last conpleted test.

def page(self):
resour ceRequest =HTTPRequest (url = "http://Iocal host: 7001")
Test (2, "Request resource").record(resourceRequest)

resour ceRequest . GET("i ndex. htm ") ;
resour ceRequest . GET("f 00. css");

grinder.logger.info("GET foo.css returned a % byte body" %
grinder.statistics.forlLastTest. getLong(
"htt ppl ugi n. responselLength"))

grinder.logger.info("Page has taken % nms so far" %
grinder.statistics.forCurrentTest.tine)

if grinder.statistics.forLastTest.time > 10:
grinder.statistics.forCurrentTest.success = 0

resour ceRequest . GET("i mage. gi f");

i nstrunment edPage = page
Test (3, "Page").record(instrunentedPage)

i nstrument edPage(sel f)

2.5.6.16 Java Message Service - Queue Sender

JMS objects are | ooked up and nmessages are created once during
initialisation. This default JNDI nanes are for the WeblLogic Server
7.0 exanpl es domai n - change accordingly.

Each worker thread:

- Creates a queue session
- Sends ten nmessages

- Closes the queue session

HHHHHHHH

fromnet.grinder.script.Ginder inport grinder
fromnet.grinder.script inport Test

fromjarray inport zeros

fromjava.util inport Properties, Random
fromjavax.jns inport Session

fromjavax.nam ng inport Context, Initial Context
from webl ogic.jndi inport W.Initial ContextFactory

Look up connection factory and queue in JNDI .
properties = Properties()

The Grinder 3

Page 74

properties[Context.PROVIDER URL] = "t3://] ocal host: 7001"
properties[Context.| N TI AL_CONTEXT_FACTORY] = W.I nitial Cont extFactory. nanme

initial Context = Initial Context(properties)

connecti onFactory =

initial Context.| ookup("webl ogic. exanpl es.jnms. QueueConnecti onFactory")
queue = initial Context.|ookup("webl ogi c. exanpl es. j ns. exanpl eQueue")
initial Context.close()

Create a connection.
connection = connectionFactory. creat eQueueConnection()
connection.start()

random = Randon()

def createBytesMessage(session, size):
bytes = zeros(size, 'b")
random next Byt es(byt es)
message = session. creat eByt esMessage()
message. wi t eByt es(byt es)
return nessage

testl = Test(1l, "Send a nessage")

cl ass Test Runner:
def call __(self):

log = grinder.logger.info

l og("Creating queue session")
sessi on = connection. creat eQueueSessi on(0, Sessi on. AUTO ACKNONLEDGE)

sender = session. creat eSender (queue)
testl.record(sender)

message = creat eByt esMessage(sessi on, 100)
| og(" Sendi ng ten nmessages")

for i in range(0, 10):
sender. send(message)
grinder. sl eep(100)

I og(" d osing queue session")
session. cl ose()

2.5.6.17 Java Message Service - Queue Receiver

JMS objects are | ooked up and nmessages are created once during
initialisation. This default JND nanes are for the WeblLogic Server
7.0 exanpl es domai n - change accordingly.

Each worker thread:

- Creates a queue session
- Receives ten nessages

- Closes the queue session

This script denonstrates the use of The Grinder statistics APl to
record a "delivery time" customstatistic.

Copyright (C) 2003, 2004, 2005, 2006 Philip Aston
Copyright (C) 2005 Dietrich Boll mann
Di stributed under the terns of The Ginder license.

HHFHHFHEHFHHFHHFHHHR

fromjava.lang inport System

fromjava.util inport Properties

fromjavax.jns inport MessageListener, Session
fromjavax.nam ng inport Context, Initial Context
fromnet.grinder.script.Ginder inport grinder
fromnet.grinder.script inport Test
fromthreading inport Condition

The Grinder 3

Page 75

The Grinder 3

from webl ogi c. jndi inport W.Initial ContextFactory

Look up connection factory and queue in JNDI.

properties = Properties()

properties[Context.PROVIDER URL] = "t3://1 ocal host: 7001"

properties[Context.| N TI AL_CONTEXT_FACTORY] = W.I nitial Cont ext Factory. nanme

initial Context = Initial Context(properties)

connecti onFactory =

i nitial Context.| ookup("webl ogic. exanpl es.jnms. QueueConnecti onFactory")
queue = initial Context.|ookup("webl ogi c. exanpl es. j ns. exanpl eQueue")
initial Context.close()

Create a connection.
connection = connectionFactory. creat eQueueConnection()
connection.start()

Add two statistics expressions:

1. Delivery time:- the nean tine taken between the server sending
the nmessage and the receiver receiving the nmessage.

2. Mean delivery tine:- the delivery time averaged over all tests.
We use the userLong0 statistic to represent the "delivery tine".

grinder.statistics.registerDatalLogExpression("Delivery time", "userLong0")
grinder.statistics.registerSunmaryExpressi on(
"Mean delivery tine",
"(/ userLongO(+ tinmedTests untimedTests))")

We record each nessage recei pt against a single test. The

test tine is neaningless.

def recordDeliveryTi ne(deliveryTine):
grinder.statistics.forCurrentTest.setVal ue("userLong0", deliveryTi ne)

Test (1, "Receive nessages").record(recordDeliveryTi nme)

cl ass Test Runner (Messageli stener):

def __init__(self):

sel f. messageQueue = [] # Queue of received nessages not yet recorded.
self.cv = Condition() # Used to synchronise thread activity.
def __call__(self):

log = grinder.logger.info

l og("Creating queue session and a receiver")
sessi on = connection. creat eQueueSessi on(0, Sessi on. AUTO ACKNOWNLEDGE)

recei ver = session. createReceiver(queue)
recei ver. nessagelLi stener = self

Read 10 nessages fromthe queue.
for i in range(0, 10):

Wait until we have received a nessage.

sel f.cv.acquire()

whil e not sel f.messageQueue: self.cv.wait()

Pop delivery time fromfirst nmessage in nessage queue
deliveryTine = sel f. messageQueue. pop(0)

sel f.cv.rel ease()

| og(" Recei ved nessage")

We record the test a here rather than in onMessage
because we nust do so froma worker thread.
recordDel i veryTi me(deliveryTi me)

I og(" C osing queue session")
session. cl ose()

Rather than over conplicate things with explict nmessage

acknowl edgenent, we sinply discard any additional nessages

we nay have read.

| og(" Recei ved % additi onal nmessages" % | en(sel f.nmessageQueue))

Page 76

The Grinder 3

Cal |l ed asynchronously by JMS when a nessage arrives.
def onMessage(sel f, message):
sel f.cv.acquire()

In WebLogic Server JMS, the JMS tinmestanp is set by the

sender session. All we need to do is ensure our clocks are

synchroni sed. ..

deliveryTine = SystemcurrentTimeMI1is() - nmessage. get JIMSTi nest anp()

sel f. messageQueue. append(del i veryTi ne)

self.cv.notifyAl ()
sel f.cv.rel ease()

2.5.6.18 Using The Grinder with other test frameworks

Exanpl e showi ng how The Ginder can be used with HTTPUnit.
#

Copyright (C 2003, 2004 Tony Lodge

Copyright (C 2004 Philip Aston

Distributed under the terms of The Grinder license.

fromnet.grinder.script.Ginder inport grinder
fromnet.grinder.script inport Test

fromcom zaplet.test.frontend. http inport HttpTest

These correspond to nethod nanes on the test class.
testNanmes = ["testRedirect",
"test Refresh",
"t est Negati veLogi n",
"testLogin",
"testPortal ",
"t est Header",
"t est Aut hori ngLi nk",
"t est Tenpl at eDesi gn",
"test Search",
"test Preferences",
"t est About Zapl et ",
"t est Hel p",
"t est Logout Li nk",
"t est Navi gati onFrane",
"t est Bl ankFranme",
"t est Cont ent Frame”,
"testLogout”,]

tests=[]

for name, i in zip(testNanes, range(len(testNanes))):
t = HttpTest(nane)
Test (i, nane).record(t)
tests. append(t)

A TestRunner instance is created for each thread. It can be used to
store thread-specific data.
cl ass Test Runner:
def __call__(self):
for t in tests:
result = t.run()

2.5.6.19 Email

Send email using Java Mail (http://java.sun.conl products/javamail/)
#

This Ginder Jython script should only be used for legal email test
traffic generation within a |l ab testbed environment. Anyone using
this script to generate SPAM or other unwanted email traffic is

Page 77

violating the I aw and should be exiled to a very bad place for a
very long tine.

Copyright (C) 2004 TomPittard
Copyright (C) 2004-2008 Philip Aston
Di stributed under the terns of The Grinder license.

O HHHH

fromnet.grinder.script.Ginder inport grinder
fromnet.grinder.script inport Test

fromjava.lang i nport System
fromjavax. mail inmport Message, Session
fromjavax.mail.internet inport InternetAddress, M neMessage

enmi | SendTest1 = Test(1, "Enmmil Send Engi ne")

cl ass Test Runner:
def __call__(self):
snt pHost = "nmai |l host"

properties = System getProperties()
properties["nmail.sntp.host"] = sntpHost

sessi on = Session. getlnstance(System get Properties())
sessi on. debug = 1

message = M neMessage(sessi on)
message. set Fron(I nt er net Addr ess(" TheG i nder @ourt est donmai n. net"))
message. addReci pi ent (Message. Reci pi ent Type. TO,

I nt er net Addr ess("you@ourtestdonain. net"))

message. subject = "Test email % fromthread %" % (grinder.runNunber,

The Grinder 3

grinder. t hreadNunber)

One could vary this by pointing to various files for content
message. set Text (" SMIPTransport Email works from The Grinder!")

transport = session.getTransport("sntp")

I nstrunent transport object.
enmi | SendTest 1. record(transport)

transport. connect (snt pHost, "usernane", "password")
transport. sendMessage(nessage,

nmessage. get Reci pi ent s(Message. Reci pi ent Type. TO))

transport. cl ose()

2.5.6.20 Run test scripts in sequence

Scripts are defined in Python nodul es (helloworld. py, goodbye. py)
specified in grinder.properties:

#
scriptl=helloworld
script2=goodbye

fromnet.grinder.script.Ginder inport grinder
fromjava.util inport TreeMap

TreeMap is the sinplest way to sort a Java nap.
scripts = TreeMap(grinder. properties. getPropertySubset("script"))

Ensure nodules are initialised in the process thread.
for nodule in scripts.values(): exec("inport %" % nodul e)

def createTest Runner (nodul e):
exec("x = %. Test Runner ()" % nodul e)
return x

cl ass Test Runner:
def __init__(self):
sel f.testRunners = [createTest Runner(m for min scripts.values()]

Page 78

This nethod is called for every run.
def __call__(self):
for testRunner in self.testRunners: testRunner()

2.5.6.21 Run test scripts in parallel

Run TestScriptl in 50% of threads, TestScript2 in 25% of threads,

and TestScript3 in 25% of threads.
fromnet.grinder.script.Ginder inport grinder
scripts = ["TestScriptl", "TestScript2", "TestScript3"]

Ensure nodules are initialised in the process thread.
for script in scripts: exec("inport %" % script)

def createTest Runner(script):
exec("x = %. Test Runner ()" % script)
return x

cl ass Test Runner:
def __init__(self):
tid = grinder.threadNunber

if tid %4 == 2:

sel f.test Runner = createTest Runner(scripts[1])
elif tid %4 == 3:

sel f.test Runner = createTest Runner(scripts[2])
el se:

sel f.test Runner = createTest Runner(scripts[0])

This nethod is called for every run.
def _ _call__(self):
sel f. test Runner ()

2.5.6.22 Thread ramp up

A sinple way to start threads at different tines.
#

fromnet.grinder.script.Ginder inport grinder

def | og(nessage):
grinder. | ogger.info(message)

cl ass Test Runner:
def __init__(self):
log("initialising")

def initial Sleep(self):

sl eepTime = grinder.threadNunber * 5000 # 5 seconds per thread

grinder. sl eep(sl eepTine, 0)

log("initial sleep conplete, slept for around % ns" % sl eepTi ne)

def __call__(self):
if grinder.runNunber == 0: self.initialSleep()

grinder. sl eep(500)
log("in __call__()")

2.5.6.23 Hello World in Clojure

;; Asinple dojure script.
(let [grinder net.grinder.script.Ginder/grinder]

The Grinder 3

Page 79

The Grinder 3

; The script returns a factory function, called once by each worker
; thread.

(fn []

; The factory function returns test runner function.

(fn 1
(do
(.. grinder (getLogger) (info "Hello Wrld"))))))

2.6 Plug-ins

2.6.1 The HTTP Plug-in

2.6.1.1 What's it for?

The HTTPPlugin is amature plug-in for testing HTTP services. It has a number

of utilities useful for HTTP scripts as well as atool, the TCPProxy (../g3/
tcpproxy.html#HTTPPluginT CPProxyFilter) , which allows HTTP scripts to be
automatically recorded. Recorded scripts are often customised, for example to
simulate multiple users. This requires you to know alittle about writing scripts (../g3/
scripts.html) .

The HTTPPlugin is built into The Grinder and is automatically initialised whenever a
script imports one of its classes. For example:

fromnet.grinder.plugin.http inmport HTTPRequest

The key class provided by the plug-in is HT TPRequest (.././g3/script-javadoc/net/grinder/
plugin/http/HT TPRequest.html) . The best way to see how to use this classisto record a
script with the TCPProxy.

The plug-in wiresitself into The Grinder script life cycle. It maintains a cache of
connections and cookies for each worker thread which it resets at the beginning of each
run. Each run performed by aworker thread simulates a browser session carried out by a
user. Resetting athread's cookies at the beginning of arun will cause server applications
that use cookie-based tracking to create a new session.

If your server application uses some other mechanism for session tracking (e.g. URL
rewriting or hidden parameters), the script will have to capture and resend the appropriate
token. The TCPProxy goes to some lengths to identify and record these tokens.

If an HTTPRequest isinstrumented with aTest , the plug-in contributes additional
statistics, including the HT TP status code, the response body length, and additional
connection timing information. These statistics appear in the console and are recorded to
the process data log. If several HTTPRequest s are instrumented within the same Test
(e.g. they are called within an instrumented function), the status code of the last response
is recorded.

2.6.1.2 Controlling the HTTPPIlugin

The behaviour of the plug-in can be controlled from within scripts run by The Grinder
through the use of the HTTPPluginControl (.././g3/script-javadoc/net/grinder/plugin/http/
HTTPPIuginControl.html) facade.

Page 80

../g3/tcpproxy.html#HTTPPluginTCPProxyFilter
../g3/scripts.html
.././g3/script-javadoc/net/grinder/plugin/http/HTTPRequest.html
.././g3/script-javadoc/net/grinder/plugin/http/HTTPPluginControl.html

The Grinder 3

Levels of Control

There are three levels of control of the behaviour of the HTTPPlugin that the
HTTPPIuginControl facade gives you access to:

1. Default Connection Behaviour

* Method: get Connecti onDefaul ts

* ReturnsaHTTPPI ugi nConnect i on that can be used to set the default
behaviour of new connections.

2. Thread Connection Behaviour

* Method: get Thr eadConnect i on

* ReturnsaHTTPPI ugi nConnect i on for aparticular URL.

* Theresulting HTTPPI ugi nConnect i on isvalid for the current thread and the
current run. It can be used to set specific authentication details, default headers,
cookies, proxy servers, and so on for the current thread/run on a per-URL basis.

* Thismethod will throw aGri nder Except i on if not called from aworker
thread.

3. Thread HTTPClient Context Object Behaviour

e Method: get Thr eadHTTPC i ent Cont ext

* Returnsthe HTTPClient context object for the calling worker thread.
Thisis useful when calling HTTPClient methods directly, e.g.
Cooki eModul e. |'i st Al | Cooki es(hj ect) .

* Thismethod will throw aGri nder Except i on if not called from aworker
thread.

Importing the HTTPPluginControl

Place the following line at the top of your grinder script along with your other import
statements

fromnet.grinder.plugin.http inport HTTPPI ugi nContr ol

Setting HTTPClient Authorization Module

The HTTPClient Authorization module is no longer enabled by default because it
prevents raw authentication headers being sent through. The module also slows things
down as HTTPClient must parse responses for challenges.

Users who still wish to use the HTTPClient Authorization module can enable it using:

control = HTTPPI ugi nControl . get Connecti onDef aul t s()
control . set UseAut hori zat i onMbdul e(1)

The authentication details can be set using the Authorizationinfo (.././g3/script-javadoc/
HTTPClient/AuthirizationInfo.html) API. HTTPClient maintains authentication
information separately in each context, so the APl must be called by each worker thread.
Seethe Digest Authentication sample (../g3/script-gallery.html#digestauthentication.py)
in the script gallery, aswell as the example in the next section.

Setting an HTTP proxy

Should you need to specify an HTTP proxy to route requests through the following code
can be used to specify the default proxy.

Page 81

.././g3/script-javadoc/HTTPClient/AuthirizationInfo.html
../g3/script-gallery.html#digestauthentication.py

The Grinder 3

control = HTTPPI ugi nControl . get Connecti onDef aul t s()
control.setProxyServer ("l ocal host", 8001)

HTTP proxies can also be specified at the thread connection level. Thisis useful to set
proxies on aper URL basis.

proxyURL1 = HTTPPI ugi nControl . get ThreadConnection("http://url1")
proxyURL2 = HTTPPI ugi nControl . get ThreadConnection("http://url2")
proxyURL1. set ProxyServer ("l ocal host", 8001)
proxyURL2. set ProxyServer ("1 ocal host", 8002)

If the HTTP proxy requires authentication, enable the HTTPClient Authorization Module,
as described in the previous section. Having so, each worker thread can set up the
appropriate authentication details using the Authorizationlnfo (.././g3/script-javadoc/
HTTPClient/Authirizationlnfo.html) API. For example:

fromnet.grinder.plugin.http inmport HTTPRequest, HTTPPI ugi nContr ol
from HTTPCl i ent inport Authorizationlnfo

defaults = HTTPPI ugi nCont rol . get Connecti onDef aul t s()
def aul ts. useAut hori zati onMbdule = 1
def aul ts. set ProxyServer ("l ocal host", 3128)

cl ass Test Runner:
def __init__(self):
Aut hori zat i onl nf 0. addBasi cAut hori zati on("| ocal host",
8001,
"My Proxy Real ni',
"j oeuser",
"pazzword",

HTTPPI ugi nControl . get Thr eadHTTPCO i ent Cont ext ())
def __call__(self):
...
Setting HTTP Headers

The HTTPlugin allows you to set the HTTP Headers sent with requests. The method
takes the settings as header-name/value pairs

control = HTTPPI ugi nControl . get Connecti onDef aul t s()
control . set Def aul t Header s(NVPai r (" header - nane", "val ue"),))

Typica headers you might want to set here are Accept andits Accept - * relatives,
Connecti on, From User - Agent , etc.
For exampl e to disable persistent connections:

control = HTTPPI ugi nControl . get Connecti onDef aul t s()
control . set Def aul t Header s(NVPai r (" Connection", "close"),))

Setting Encoding

Encoding for Content or for Transfer can be switched on and off using boolean flags

control = HTTPPI ugi nControl . get Connecti onDef aul t s()
control . set UseCont ent Encodi ng(0)
control . setUseTransf er Encodi ng(1)

Page 82

.././g3/script-javadoc/HTTPClient/AuthirizationInfo.html

The Grinder 3

Setting Redirect Behaviour

Setting the HTTPPlugin behaviour with regards to following redirects can be switched on
and off using boolean flags

control = HTTPPI ugi nControl . get Connecti onDef aul t s()
control.setFol | owRedi rect s(0)

Setting Local Address

Should you be conducting your tests on a server with multiple network interfaces you can
set the local 1P address used by the HTTPPlugin for outbound connections.

control = HTTPPI ugi nControl . get Connecti onDef aul t s()
control . setLocal Address("192.168.1.77")

Setting Timeout Value

The timeout value for used for creating connections and reading responses can be
controlled viathe HTTPPlugin. The time is specified in milliseconds.

The following example sets a default timeout value of 30 seconds for al connections.

control = HTTPPI ugi nControl . get Connecti onDef aul t s()
control . setTi meout (30000)

Setting Cookie Behaviour

Setting the HTTPPlugin behaviour with regards to whether cookies are used or not can be
switched on and off using boolean flags

control = HTTPPI ugi nControl . get Connecti onDef aul t s()
control . set UseCooki es(0)

Automatic decompression of gzipped responses

For load testing, its often not practical to uncompress the response. It's simply too
expensive in CPU termsto do all that decompression in the client worker process. This
doesn't mean you can't test a server that compresses its responses, just that you can't parse
the responses in the script.

On the other hand, there are times you may want to do this. The Grinder supports
decompression which it inherits from the HTTPC i ent library, you just need to enable
it. If your server encrypts the content and sets a Cont ent - Encodi ng header that
startswithone of { gzi p, def | at e, conpress,i dentity }, youcanautomaticaly
decrypt the responses by adding the following lines to the beginning of your script:

fromnet.grinder.plugin.http inmport HTTPPI ugi nContr ol
connecti onDefaul ts = HTTPPI ugi nControl . get Connect i onDef aul t s()
connecti onDef aul ts. useCont ent Encoding = 1

Similarly, if your server setsaTr ansf er - Encodi ng header that starts
withoneof { gzi p, def | at e, conpr ess, chunked, i dentity

}, you can enable the HTTPClient Transfer Encoding Module with
connecti onDef aul t s. useTransf er Encodi ng = 1.

Page 83

The Grinder 3

There is no support for automatically decrypting things based on their Cont ent - Type
(as opposed to Cont ent - Encodi ng, Tr ansf er - Encodi ng). Your browser doesn't
do this, so neither should The Grinder. If you really want to do this, you can use Java or
Jython decompression libraries from your script.

Streaming requests and response

The HTTPRequest (.././g3/script-javadoc/net/grinder/plugin/http/HTTPRequest.html)
class has support for sending request data from a stream. This allows an arbitrarily
large amount of data to be sent without requiring a corresponding amount of memory.
To do this, use these versions of the POST (.././g3/script-javadoc/net/grinder/plugin/
http/HTTPReguest.ntml#POST (java.lang.String, java.io.lnputStream)) , PUT (.././
g3/script-javadoc/net/grinder/plugin/http/HT TPRequest. html#POST (java.lang. String,
javaio.lnputStream)) , OPTIONS (.././g3/script-javadoc/net/grinder/plugin/http/
HTTPRequest.html#POST (java.lang.String, java.io.lnputStream)) , methods.

HTTPRequest alows the response body to be handled as a stream. Refer to the
Javadoc for the setReadResponseBody (.././g3/script-javadoc/net/grinder/plugin/http/
HTTPRequest. html#setReadResponseBody (boolean)) method for more details.

2.6.1.3 Using HTTPUtilities
The HTTPPlugin providesan HTTPUt i | t i es class:

net.grinder.plugin. http. HTTPUilities
This class has several methods which are useful for HTTP scripts.

Setting Basic Authorization

The HTTPUtilities class can create an NV Pair for an HT TP Basic Authorization header
using the following method:

httpUtilities = HTTPPl ugi nControl .getHTTPUtilities()
httpUtilities.basicAuthorizati onHeader (' usernane', 'password')

Include the header with each HTTPRequest that requires the authentication.

request 101. GET(' /', (),
(httpUtilities.basicAuthorizati onHeader('prelive', 'g3tout'),))
Getting the Last Response

The HTTPUTtilities class can return the response for the last request made by the calling
worker thread using the following method:

httpUtilities = HTTPPl ugi nControl.getHTTPUtilities()
httpUtilities. getlLast Response()

This returns the response, or nul | if the calling thread has not made any requests.
This must be called from aworker thread, if not it throws a GrinderException.

Getting a Token Value from a Location URI

The HTTPUtilities class can return the value for a path parameter or query string name-
value token with the givent okenNan®e in aLocation header from the last response. If

Page 84

.././g3/script-javadoc/net/grinder/plugin/http/HTTPRequest.html
.././g3/script-javadoc/net/grinder/plugin/http/HTTPRequest.html#POST(java.lang.String, java.io.InputStream)
.././g3/script-javadoc/net/grinder/plugin/http/HTTPRequest.html#POST(java.lang.String, java.io.InputStream)
.././g3/script-javadoc/net/grinder/plugin/http/HTTPRequest.html#POST(java.lang.String, java.io.InputStream)
.././g3/script-javadoc/net/grinder/plugin/http/HTTPRequest.html#setReadResponseBody(boolean)

The Grinder 3

there are multiple matches, the first valueis returned. This utility can be invoked using
the following method:

httpUtilities = HTTPPl ugi nControl .getHTTPWilities()
httpUtilities.val ueFromLocati onURI (t okenNane)

If there is no match, an empty string is returned rather than nul | . This makes scripts
more robust (as they don't need to check the value before using it), but they lose the
ability to distinguish between a missing token and an empty value.

This must be called from aworker thread, if not it throws a GrinderException.

Getting a Token Value from a URI in the Body of the Response

The HTTPUtilities class can return the value for a path parameter or query string name-
value token with the givent okenNane in aURI in the body of the last response. If there
are multiple matches, the first value is returned. This utility can be invoked using the
following method:

httpUtilities = HTTPPl ugi nControl .getHTTPWilities()
httpUtilities.val ueFromBodyURI (t okenNane)

Thisreturnsthefirst value if oneisfound, or nul | .
This must be called from aworker thread, if not it throws a GrinderException.

2.7 Statistics

2.7.1 Standard statistics

Details of the statistics provided by The Grinder can be found in the documentation of the
Statistics (.././g3/script-javadoc/net/grinder/script/Statistics.html) interface. Scripts can
use thisinterface to:

* Query whether atest was successful

» Obtain statistic values, such as the test time of the last test

* Modify or set atest's statistics before they are sent to the log and the console
* Report custom statistics

* Register additional views of standard and custom statistics

2.7.2 Distribution of statistics

All the statistics displayed in the console are aggregates (totals or averages) of a number
of tests received in the appropriate period. The reason for thisis efficiency. The Grinder
would not perform or scale if every data point was transferred back to the console.

The only place per-test statistics are available isin the processdat a_* files.

2.7.3 Querying and updating statistics

A script can query the statistics about the last completed test using
grinder.statistics.forLastTest (.././g3/script-javadoc/net/grinder/script/
Statistics.html#getForLastTest()) . Script code instrumented by atest can
access information about the statistics for the test (which may be incomplete)
using grinder.statistics.forCurrentTest (.././g3/script-javadoc/net/grinder/
script/ Stati stics.html#getForCurrentTest()) . For details of the query and update

Page 85

.././g3/script-javadoc/net/grinder/script/Statistics.html
.././g3/script-javadoc/net/grinder/script/Statistics.html#getForLastTest()
.././g3/script-javadoc/net/grinder/script/Statistics.html#getForLastTest()
.././g3/script-javadoc/net/grinder/script/Statistics.html#getForCurrentTest()

The Grinder 3

methods, see StatisticsForTest (.././g3/script-javadoc/net/grinder/script/
Statistics.StatisticsForTest.html) . Refer to the documentation of the Statistics (.././g3/
script-javadoc/net/grinder/script/Stati stics.html) interface for other details.

An example script (../g3/script-gallery.html#statistics.py) demonstrating these APIs can
be found in the Script Gallery.

2.7.4 Registering new expressions

Custom statistic expressions can be added to console views and the

worker process summary tables (found in the out _* log files) using the
registerSummaryExpression (.././g3/script-javadoc/net/grinder/script/

Stati stics.html#register SummaryExpression(java.lang.String, java.lang.String)) method.

Custom expressions can be added to worker processdat a_* using the
registerDatal ogExpression (.././g3/script-javadoc/net/grinder/script/
Statistics.html#registerDatal ogExpression(java.lang.String, javalang.String)) method.

Both methods take a displayName and an expression as parameters.

The displayName is the label used for the expression. For expressions displayed in
the console, this string is converted to a key for an internationalised resource bundle
look up by prefixing the stringwith st ati sti c. and replacing any whitespace with
underscores; if no value for the key exists, the raw display name string is used.

Expressions are composed of statistic names (see Statistics (.././g3/script-javadoc/net/
grinder/script/Statistics.html)) in a simple post-fix format using the symbols +, -, /

and *, which have their usual meanings, in conjunction with ssmple statistic names or
sub-expressions. Precedence is controlled by grouping expressions in parentheses. For
example, theerror rateis(* (/ errors period) 1000) errorsper second. The
symbol sqrt can be used to calculate the square root of an expression.

Sample statistics, such ast i medTest s, must be introduced with one of sum count ,
orvar i ance, depending on the attribute of interest. For example, the statistic
expression (/ (sumtinedTests) (count tinedTests)) givesthe
mean test time in milliseconds.

2.8 SSL Support

The Grinder 3 supports the use of SSL by scripts. The Grinder 3 implements SSL using
the Java Secure Socket Extension (JSSE) included in the Java run time. When used with
the HTTP Plug-in, thisisas simple asusing ht t ps instead of ht t p in URIs. Scripts can
obtain a suitable SSLCont ext and hencea SSLSocket Fact ory for non-HTTP use
cases, and can control the allocation of SSL sessions to worker threads.

2.8.1 Before we begin

2.8.1.1 Performance

Simulating multiple SSL sessions on a single test machine may or may not be realistic.
A typical browser running on a desktop PC has the benefit of a powerful CPU to run the
SSL cryptography. Be careful that your results aren't constrained due to inadequate test
client CPU power.

Page 86

.././g3/script-javadoc/net/grinder/script/Statistics.StatisticsForTest.html
.././g3/script-javadoc/net/grinder/script/Statistics.html
../g3/script-gallery.html#statistics.py
.././g3/script-javadoc/net/grinder/script/Statistics.html#registerSummaryExpression(java.lang.String, java.lang.String)
.././g3/script-javadoc/net/grinder/script/Statistics.html#registerDataLogExpression(java.lang.String, java.lang.String)
.././g3/script-javadoc/net/grinder/script/Statistics.html

The Grinder 3

2.8.1.2 The Grinder's SSL implementation is not secure

To reduce the client side performance overhead, The Grinder deliberately accelerates SSL
initialisation by using arandom number generator that is seeded with a fixed number.
Further, no validation of server certificatesis performed. Neither of these hinder SSL
communication, but they do make it less secure.

No guarantee is made as to the cryptographic strength of any SSL communication using The
Grinder.

This acceleration affects initialisation time only and should not affect timing information
obtained using The Grinder.

2.8.2 Controlling when new SSL sessions are created

By default The Grinder creates anew SSL session for each run carried out by
each worker thread. Thisisin line with the usual convention of smulating a
user session with aworker thread executing the part of the script defined by
Test Runner. __call _ ().

Alternatively, scripts may wish to have an SSL session per worker thread, i.e. for each
thread to reuse SSL sessions on subsequent executionsof Test Runner. __call __ ().
This can be done with the SSLCont r ol . set Shar eCont ext Bet weenRuns()
method:

fromnet.grinder.script.Ginder inport grinder
grinder. SSLContr ol . shar eCont ext Bet weenRuns = 1

Thiswill cause each worker thread to reuse SSL sessions between runs.
SSL sessions will still not be shared between worker threads. Calling
set Shar eCont ext Bet weenRuns() affectsall of the worker threads.

2.8.3 Using client certificates

If aserver requests or requires a client certificate, The Grinder must have some way of
providing one - thisinvolves specifying a key store.

fromnet.grinder.script.Ginder inport grinder

cl ass Test Runner:
def __call__(self):
grinder. SSLControl . set KeyStoreFil e("nykeystore.jks", "passphrase")

Itisonly valid to use set Key St or eFi | e from aworker thread, and it only affects that
worker thread.

Thereisaso amethod called set Key St or e whichtakesaj ava. i 0. | nput St ream
which may be useful if your key store doesn't live on the local file system. Both methods
have an overloaded version that allows the key store type to be specified, otherwise the
default typeisused (normally j ks).

Whenever set Key St or eFi | e, set KeySt or e, or set KeyManager s (see
below) is called, the current SSL session for the thread is discarded. Consequently,

you usually want to call these methods at the beginning of your __cal | __ () method
or fromthe Test Runner. i nit__ () constructor. Setting the thread's key

Page 87

The Grinder 3

storein Test Runner. __init__ () isespecialy recommended if you caling
set Shar eCont ext Bet weenRuns(t r ue) to share SSL sessions between runs.

2.8.4 FAQ

The astute reader who is familiar with key stores may have afew guestions. Here'samini

FAQ:

1. If I have several suitable certificatesin my key store, how does The Grinder chose
between them?

The Grinder relies on the VM's default Key Manager implementations. This picks a
certificate from the store based on SSL negotiation with the server. If there are several
suitable certificates, the only way to control which is used isto provide your own
KeyManager .

2. set KeySt or eFi | e hasa parameter for the key store password. What about the
pass phrase that protects the private key in the key store?

The pass phrases for keys must be the same as the key store password. Thisisa
restriction of the default KeyManager s. If you don't like this, you can provide your
own KeyManager .

3. Shouldn't | need to specify a set of certificates for trusted Certificate Authorities?

No. The Grinder does not validate certificates received from the server, so does not
need a set of CA certificates.
4. Canl usethe propertiesj avax. net . ssl . keySt ore,
j avax. net. ssl . keySt or eType, and
j avax. net. ssl . key St or ePasswor d to specify a global keystore?

No. The Grinder does not use these properties, primarily because the JSSE does not
provide away to accessits default SSL Context.

2.8.5 Picking a certificate from a key store [Advanced]

Here's an example script that providesits own X509Key Manager implementation
which controls which client certificate to use. The example is hard coded to always use
the certificate with the aliasnyal i as.

from com sun. net.ssl inport KeyManager Factory, X509KeyManager
fromjava.io inport FilelnputStream

fromjava.security inport KeyStore

fromjarray inport array

cl ass MyManager (X509KeyManager) :
def __init__(self, keyStoreFile, keyStorePassword):
keyStore = KeyStore. getlnstance("jks")
keyStore. | oad(Fil el nput Strean(keyStoreFile), keyStorePassword)

keyManager Factory = \
KeyManager Fact ory. get | nst ance(KeyManager Fact ory. get Def aul t Al gorit hn())
keyManager Factory.init(keyStore, keyStorePassword)

Assune we have one key nmnager.
sel f. _del egate = keyManager Fact ory. keyManager s[0]

def _ _getattr__(self, a):
"""Sonme Python magic to pass on all invocations of nethods we
don't define on to our del egate."""

if self.__dict__.has_key(a): return self.__dict_ [a]
el se: return getattr(self._del egate, a)

Page 88

The Grinder 3

def chooseCientAlias(self, keyTypes, issuers):
return "nyalias"

nmyManager = MyManager (" keystore.jks", "password")
nmyManager Array = array((nyManager,), X509KeyManager)

cl ass Test Runner:
def __call__(self):
grinder. SSLControl . set KeyManager s(nyManager Arr ay)
..

2.8.6 Debugging

When debugging SSL interactions, you may find it useful to set the following in
grinder. properties.

grinder.jvm argunent s=- j avax. net . debug=ssl
or -Djavax. net.debug=all

2.9 Advice

2.9.1 How should | set up a project structure for The Grinder?

Well the short answer is however works best for you. Many people will aready know
how they want to set up their directory structure and will have no issue implementing
The Grinder as one of their many tools. For those looking for alittle guidance it is worth
asking yourself questions like:

* How many projectswill | be working on?

* Will I need to revisit projects from time to time?
* Dol need repeatability?

* Isthisashared implementation?

e ..€fc

Below is given an example of adirectory structure for setting up The Grinder.

- @Ginder

|

|-- bin

| | -- setGinderEnv.sh/cnd
| | -- startAgent.sh/cnd
| | -- start Consol e. sh/cnd
| “-- startProxy.sh/cnd
|

| -- engine

| | -- grinder-3.0-beta32
| |-- grinder-3.0

|

|

|-- etc

| | -- grinder.properties
| R

|

|-- jvm

| |-- jdk1.3

| | -- jdk1.4.02

|

|

|-- 1lib

| |-- jython2.1

| |-- jdom1.0

Page 89

The Grinder 3

|-- xerces_2 60
| -- xerces-2_6_2
|-- oracle

- logs

- projects
- website_project
| -- httpscript.py
| -- httpscript_tests. py

- db_project

|
|
|
|
|
| .
!--Jdbc.py

|

First off the bin directory has been created for storing executable files for the
implementation. The sample start scripts from "How do | start The Grinder?" (../
g3/getting-started.html#howtostart) have been included in this directory. The engine
directory has been created for storing the versions of The Grinder that may be used.
Strictly speaking the versions of The Grinder could be stored under the lib directory
but for this example The Grinder has been given its own directory. The etc directory
has been created to store the configuration files for the implementation such as the
grinder.properties file. The jvm directory has been created to store the various jdks and
their versions that could be used in testing. The lib directory has been created to store
the various third party libraries and their respective versions that projects may require.
For example if you wanted to use the full set of libraries (../g3/jython.html#ython-
installation) which come with jython then thisis the directory into which you would
install. Remember to update your CLASSPATH with the libraries you require. The logs
has been created to store the various logs that the grinder generates during its runs.The
proj ects directory has been created to store the scripts to be run by The Grinder and
organise them by project/body of work.

The above example would be useful as a simple implementation for one person who
works on one project at atime. Asthe number of projects grows, more people share the
implementation, or projects need to be revisited with repeatability ensured, then it makes
sense, in this example, to modularize the implementation around the projects. To do this
simply create the bin, etc and logs directories under the respective projects like so:

- projects
-- website_project

|-- bin

| | -- setGinderEnv.sh/cnd
| | -- startAgent.sh/cnd
| | -- start Consol e. sh/ cnd
| “-- startProxy.sh/cnd
|-- etc
| | -- grinder.properties
|
| -- httpscript.py
| -- httpscript_tests. py
-- logs

- db_project

Page 90

../g3/getting-started.html#howtostart
../g3/jython.html#jython-installation

The Grinder 3

Once this has been done the environment can be set to use the engine, VM and libraries
required by a particular project, rather than setting the environment for all the projects
(as would happen in the smple implementation). This allows you, for example, to retain
projects which were run using legacy versions of libraries and/or engine and re-run them
at alater date with the same setup. Also different projects may require different versions
of the same library which would have caused issues when using an implementation-wide
CLASSPATH. The grinder.properties file can also be customised on a per project basis.

Modularizing the implementation like this gives greater flexibility and repeatability and
opens up the prospect of multiple people using the implementation concurrently.

2.9.2 A Step-By-Step Script Tutorial

2.9.2.1 Introduction

Theis a step-by-step tutorial of how to write a number of dynamic HTTP tests using
various aspects of The Grinder and Jython APIs. The test script contains a number of
tests that are requests to the same URL. For each request, a different XML parameter
is specified. The resulting HTML datais checked on return and if the test was not
successful, the statistics API is used to mark that test as failed.

Richard Perks

2.9.2.2 Script Imports

import string

i mport random

fromjava.lang inport String

fromjava.net inport URLEncoder
fromnet.grinder.script inport Test
fromnet.grinder.plugin.http i nport HTTPRequest
from net.grinder.common inport Ginder Exception

Firstly when writing a script come the import statements. These include imports of
standard Python modules such asst r i ng and r andom and other Javaimports
including some language and network classes. Finally there are imports for Grinder
specific methods. A powerful feature of the Jython scripts that are used with The Grinder
is the ability to take a mix and match approach to script programming. In some cases
using a Python AP is quicker and easier than always using the corresponding Java API
calls, so feel free to use whichever APl makes most sense.

2.9.2.3 Test Definition

tests = {
" News01" : Test(1l, "News 1 posting"),
" Sport 01" : Test(2, "Sport 1 posting"),
" Sport 02" : Test (3, "Sport 2 posting"),
"Tradi ng01" : Test(4, "Trading 1 query"),

"LifeStyl e01" : Test(5, "LifeStyle 1 posting"),
}

To keep the script code easy to read, we next define all the tests we are going to be
running within this script. These are created as a Python dictionary and are name-value
pairs. The nameis the name of thetest and the valueisaTest object with atest numeric
identifier and description.

Page 91

The Grinder 3

2.9.2.4 Bread crumbs

log = grinder.logger.info

Server Properties
SERVER "http://serverhost: 7001"
URI "/ myServlet"

We next define some variables such as Grinder helper methods and server properties. The
| og variableisused to hold areference to The Grinder logging mechanism and is used
throughout the script.

2.9.2.5 The Test Interface

cl ass Test Runner:
def _ _call__(self):

Hereisthe definition of our test class and the method called by The Grinder by each test
thread. All scripts must define this class and method. Whilst we are discussing classes
and methods, an important point to remember when new to Jython script devel opment
isthat Jython/Python code is scoped by indentation, rather than using braceslikein a
language like C or Java. The colon is used to delimit the start scopesuch asani f or
method definition.

2.9.2.6 Using the Dictionary and Random Python Modules

for idx in range(len(tests)):
testld = random choi ce(tests. keys())
log("Reading XML file % " %testld)

Asdiscussed earlier, the use of Python modulesis encouraged during Grinder script
development and | have used afew examples above when performing the test run. Within
the test run, each of the tests defined in the test dictionary islooped round so that each
Grinder thread executes five separate tests. Within the loop, atest is chosen randomly
from one of the five tests. This prevents all threads of executing all the testsin the same
order and helps simulate a more random load on the server.

Within the dictionary defined ast est s, there are a number of useful methods such as
arekeys(),itenms() andsort (). We usethekeys returned from the tests dictionary
as the parameter to the choi ce() method in the random module. This randomly selects
one of the tests keys as the current test identifier.

2.9.2.7 Forget the Java IO Package when Handling Files

file = open("./CAAssets/"+testld+".xm", "r")
fileStr = URLEncoder.encode(String(file.read()))
file.close()

requestString = "% %%%" % (SERVER, URI, "?xm data=", fileStr)

When having to retrieve the contents of files using Jython script, the use of thefile
operations blitz's Java | O for pure script development speed. In the code above, we need
to open an XML document that has the name of atest, for example News01. xm . This
will be used as arequest parameter for the News01 test. Thefileis opened for reading and
encoded using the Java URL Encoder.

Page 92

The Grinder 3

We next construct the request string to the server by concatenating the server, URI and
XML documents together. Tip: if you need to remove spaces from within a string, you
can use amethod like the following:

requestString = string.join(requestString.split(), "")

2.9.2.8 Sending the Request and the Statistics API

grinder.statistics.delayReports =1
request = HTTPRequest ()
tests[testld].record(request)

| og("Sending request % " % requestString)
result = request. GET(request String)

As part of the test execution, we want the ability to check the result of the HTTP

request. If the response back from the server is not one that we except, we want to mark
the test as unsuccessful and not include the statisticsin the test times. To do this, the

del ayReport s variable can be set to 1. Doing so will delay the reporting back of

the statistics until after the test has completed and we have had chance to check its
operation. The default is to report back when the test returns control back to the script, i.e.
immediately after atest has executed.

Next we instrument the HT TPRequest with the test being executed. This enables any
calls through HTTPRequest to be monitored by the Grinder. Any other time spent within
the script will not be recorded by The Grinder. Be careful not to include extra script
processing within atest; doing so will not give the correct statistics. Only test what is
required.

Thetest itself is next executed whichisaHTTP GET to the server using our previously
constructed test string. Remember - these tests execute in aloop for the number of tests
we have defined, using arandom test each time.

if string.find(result.getText(), "SUCCESS') < 1:
grinder.statistics.forlLastTest. setSuccess(0)
witeToFile(result.getText(), testld)

On return from the HTTP GET, we check the result for the string "SUCCESS". If the
test hasfailed, this value will not be returned and the statistics object can be marked as
unsuccessful. In the case of an unsuccessful test, we write the HTML output to afile for
later analysis:

def witeToFile(text, testld):
filenane = "%-%l- page-%. ht " % (gri nder. processNane,
testld,
grinder. runNunber)

file = open(filename, "wW')

print >> file, text
file.close()

2.9.2.9 Full Script Listing

Send an HTTP request to the server with XM request val ues

import string

Page 93

The Grinder 3

i mport random
fromjava.lang inport String
fromjava.net inport URLEncoder

fromnet.grinder.script inport Test
fromnet.grinder.plugin.http inport HTTPRequest
from net.grinder.comon inport GinderException

tests = {
" News01" : Test(1l, "News 1 posting"),
" Sport 01" : Test(2, "Sport 1 posting"),
" Sport 02" : Test(3, "Sport 2 posting"),
"Tradi ng01" . Test(4, "Trading 1 query"),
"LifeStyl e01" : Test(5, "LifeStyle 1 posting"),
}
log = grinder.logger.info
out = grinder.|ogger. TERM NAL

Server Properties

SERVER
URI

= "http://serverhost: 7001"
= "/nyServlet"
cl ass Test Runner:

def __call__(self):

for idx in range(len(tests)):
testld = random choi ce(tests. keys())
log("Reading XML file % " %testld)

file = open("./CAAssets/"+testld+".xm", "r")
fileStr = URLEncoder. encode(String(file.read()))
file.close()

Send the request to the server
requestString = "% %%%" % (SERVER, URI, "?xm data=", fileStr)
requestString = string.join(requestString.split(), "")

grinder.statistics.delayReports =1
request = HTTPRequest ()
tests[testld].record(request)

| og("Sending request % " % requestString)
result = request. GET(request String)

if string.find(result.getText(), "SUCCESS') < 1:
grinder.statistics.forlLastTest. set Success(0)
writeToFile(result.getText(), testld)

Wite the response
def witeToFile(text, testld):
filenane = "%-%l- page-%. ht M " % (gri nder. processNane,
testld,
grinder. runNunber)
file = open(filenane, "w')
print >> file, text
file.close()

2.9.3 Weighted Distribution Of Tests

2.9.3.1 Introduction

Thisis a step-by-step tutorial on how to schedule tests according to any "weight
distribution” you desire. Thisis an exercise in data structures and random numbers, and
as such it does not use any facilities of The Grinder (such as HTTPClient) except for its

Page 94

The Grinder 3

core TestRunner functionality. Therefore, it isimmediately applicable to amost any test
scenario.

Walt Tuvell

2.9.3.2 Statement Of The Problem

Let's assume you have a collection of four kinds of tests you want to run, say CREATE,
READ, UPDATE, DELETE. These might be operations on a Web Server, or a Database
Server, for example.

Suppose further you want to run your tests using many threads (grinder.threads property
in the grinder.properties file), and you want to schedul e these threads amongst the tests
according to a specified "weighted distribution”. As an example, we'll assume you want
to run: 20% CREATEs, 40% READs, 30% UPDATEs, 10% DELETEs.

How can you do this?

2.9.3.3 Test Cases

Note that the problem statement is independent of the actual tests themselves. So for
illustrative purposes, we will choose dummy tests that simply print a message to stdout.
(Your testswill likely make use of deeper facilities of The Grinder, such asHTTPClient,
etc.)

def doCREATEtest():

print 'Doing CREATE test ...'
def doREADtest():

print 'Doing READ test ...'
def doUPDATEt est ():

print 'Doing UPDATE test ...'
def doDELETEtest():

print 'Doing DELETE test ...'

2.9.3.4 Weight Distribution Definition

The most flexible way to define test distribution is by means of "relative weights', that is,
numbers which specify the number of times each test is to be run relative to one another
(as opposed to an absolute number of runs - for that, see the grinder.runs property in the
grinder.propertiesfile).

For our example, we begin by defining our desired weight distribution in atable (Jython
dictionary structure) like the following:

g_Weights = {
' CREATE' :
' READ :
' UPDATE' :
' DELETE' :

PWADN

Since the weightsin this table are relative, we could multiply all their values by a
constant and arrive at the same weight distribution. (The same goes for division, provided
we end up with integers.) If the sum of weights adds up to 100, the weights can be
interpreted directly as "percentages’. For example, in our example, if we multiplied our
weights by 10, we'd end up with exactly the percentage values in the original statement of
our example.

Page 95

The Grinder 3

Note that string-names in the weight table are arbitrary tags (they will be mapped to
thetestsin TestRunner.__call__ ()). Asamatter of style, the weight table should be
placed near the top of your script, so its settings can be modified easily from run to run,
according to the test scenarios you want to model.

2.9.3.5 Accumulator Function

All the magic of choosing which test to run according to your specified weight
distribution is accomplished by the following "accumulator” function:

def wei ght Accurrul ator (i _dict):
keyList =i _dict.keys()
keyList.sort() # sorting is optional - order coming-in doesn't matter, but
determ nismis kinda cool
listAcc =[]
wei ght Acc = 0
for key in keyList:
wei ght Acc += i _di ct[key]
l'i st Acc. append((key, weightAcc))
return (listAcc, weightAcc) # order going-out does matter - hence "listAcc"
instead of "dictAcc"

g_Wei ght sAcc, g_Wei ght sAccMax = wei ght Accunul at or (g_Wei ght s)
g_Wei ght sAccLen, g_Wei ghtsAccMax_1 = | en(g_Wi ghtsAcc), g_Wei ghtsAccMax-1

This accumulator function takes a weight dictionary as input, and transformsit into an
accumulated weight list, suitable for random indexing, as we will do below.

As shown above, the accumulator function is called with g Weights asinput, and its
output is captured in two convenience variables. Two more convenience variables are
also defined, for use below.

2.9.3.6 Random Numbers

Next, we prepare a random number generator, which we will use to index into our
accumulated weight list. There are many choices available (including Jython), but for our
purposes here we'll just use the Java standard generator:

g_rng = java. util.Randon(java.lang. SystemcurrentTinreMI1is())

def randNum(i_mn, i_max):
assert i_mn <= i_max
range = i _max - i_mn + 1 # re-purposing "range" is legal in Python
assert range <= Ox7fffffff # because we're using java.util.Random
randnum = i _mn + g_rng. nextlnt(range)
assert i_mn <= randnum <= i _max

return randnum

Here, we've constructed a random number generator, and seeded it with the time-of -
day. (For test/simulation purposes, it is counterproductive to use secure random number
generators, such as java.security.SecureRandom, or a secure seed source.)

Further, we've defined a randNum() function that takes minimum and maximum values as
input, and returns a random number between them (inclusive of both endpoints).

Note: One advantage of using java.util.Random is that it's thread-safe, so we need
construct only asingle global generator. But that safety comes at the expense of some
performance loss, especially if you are using the generator extensively, such as generating

Page 96

The Grinder 3

massive random file/object content. In that case, you may want to use faster, non-thread-
safe generators, constructing one for each thread's private use.

2.9.3.7 Test Runner Class

We are now ready to define our TestRunner class:

cl ass Test Runner:
def __call__(self):
opNum = randNum(0, g_Wei ght sAccMax_1)
opType = None # flag for assertion bel ow
for i in range(g_WightsAcclLen):
if opNum < g_WeightsAcc[i][1]:

opType = g_Wei ghtsAcc[i][0]

br eak
assert opType in g_Wights. keys()

if opType==' CREATE : doCREATEt est ()
elif opType=='"READ : doREADtest ()
elif opType=='"UPDATE : doUPDATEt est ()
elif opType=='DELETE : doDELETEtest ()
el se . assert Fal se

According to The Grinder framework, every worker thread calls TestRunner._call ()
in an infinite loop (until it terminates). In our case, for each run, each thread first

chooses a random number, opNum, and then uses that random number to index into the
accumulated weight list. (Well, it's not exactly "indexing" in the array or database access
sense, but the ideais the same.) This resultsin the tag of an operation type, opType, to be
called. The thread then maps the operation type tag to atest, and callsit.

2.9.3.8 Putting It All Together

Our example script is now complete, so we can run it.

Let's say we want to do 10,000 runs. In your grinder.properties file, set
grinder.threads=20, grinder.runs=500. Then invoke startAgent.sh. You'll see 10,000
lines printed, each saying "Doing XXX test ...", where XXX isone of CREATE, READ,
UPDATE, DELETE.

But did you get the weighted distribution of test cases you wanted? For that, you need
to count various lines printed out by the test. In a Linux environment, you can do this
conveniently by rerunning the test in a pipeline command as follows:

startAgent.sh | \
awk '/”"Doing /{count[$0] +=1} END{for (test in count) print test, count[test]}'

A typical run of this command will produce results similar to the following:

Doi ng CREATE test ... 2006
Doing READ test ... 4045
Doi ng UPDATE test ... 2993
Doi ng DELETE test ... 956

Inspection of these numbers shows you are indeed running the distribution you desired.

2.9.3.9 Full Script Listing

Page 97

The Grinder 3

import java.lang.System java.util.Random

g_Weights = {
' CREATE' :
' READ :
' UPDATE' :
' DELETE' :

P whAN

def doCREATEt est ():

print 'Doing CREATE test ...'
def doREADtest():

print 'Doing READ test ...'
def doUPDATEt est ():

print 'Doing UPDATE test ...'
def doDELETEtest():

print 'Doing DELETE test ...'

def wei ght Accurrul ator (i _dict):
keyList =i _dict.keys()
keyList.sort() # sorting is optional - order coming-in doesn't matter, but
determ nismis kinda cool
listAcc =[]
wei ght Acc = 0
for key in keyList:
wei ght Acc += i _di ct[key]
i st Acc. append((key, weightAcc))
return (listAcc, weightAcc) # order going-out does matter - hence "listAcc"
instead of "dictAcc"

g_Wei ght sAcc, g_Wei ght sAccMax = wei ght Accunul at or (g_Wei ght s)
g_Wei ght sAccLen, g_Wei ghtsAccMax_1 = | en(g_Wi ghtsAcc), g_Wei ghtsAccMax-1

g_rng = java. util.Randon{(java.lang. SystemcurrentTimeMI1is())

def randNum(i_mn, i_max):
assert i_mn <= i_max
range = i_max - i_mn + 1 # re-purposing "range" is legal in Python
assert range <= Ox7fffffff # because we're using java.util.Random
randnum = i _mn + g_rng. nextlnt(range)
assert i_mn <= randnum <= i _max

return randnum

cl ass Test Runner:
def __call__(self):
opNum = randNum(0, g_Wei ght sAccMax_1)
opType = None # flag for assertion bel ow
for i in range(g_WightsAccLen):
if opNum < g_WeightsAcc[i][1]:

opType = g_Wei ghtsAcc[i][0]

br eak
assert opType in g_Weights. keys()

if opType==' CREATE : doCREATEt est ()
elif opType=='"READ : doREADtest ()
elif opType=='"UPDATE : doUPDATEt est ()
elif opType=='DELETE : doDELETEtest ()
el se . assert Fal se

2.9.4 Garbage Collection

2.9.4.1 Introduction

For high transactional workloads, a significant component of The Grinder's response time
can include the performance of the Java Garbage Collector (GC), which is a necessary
component of the Java Virtual Machine (JVM) that The Grinder workers run on.

Page 98

The Grinder 3

This page documents the improvements obtained by tuning garbage collection for a
particular test configuration.

Gary Mulder

2.9.4.2 Testing

Comparison tests were performed for an identical complex test suite (5 million requests
over 4 hours) with The Grinder deployed firstly on asingle two quad core dual socket

(i.e. 8 core) server with 12GB of RAM, and secondly on four dual core PCs with 4GB of
RAM each (i.e. the same number of CPUs, but twice the sockets and so twice the memory
bandwidth). All test variables were attempted to be controlled for, and the only significant
change was The Grinder hardware used.

On the latter 4 PC configuration response times reported were 25% lower on average, and
more significantly standard deviations of response times were 25% lower aswell. The
key changes between test scenarios were the change in VM heap sizes from 1*8GB to
4*3GB, and the fact that four GCs were running simultaneoudly (i.e. one GC per VM per
PC). GC is very sensitive to memory bandwidth, so with four sockets (4 x 2 core) rather
than two sockets (2 x 4 core) it is likely memory bandwidth for The Grinder was about
doubled, which in turn reduced GC pause durations. Furthermore, with four GCs running
simultaneously the times when The Grinder is subject to GC has been smoothed, which
was directly reflected in the reduced response time standard deviations.

2.9.4.3 Conclusions

Conclusions are as follows. Y our mileage may vary:

1. Usethe Sun Hotspot VM with CMS GC (not the Java 7 G1 GC which was observed
to behave badly in some tests) with settings similar to the following (for 4GB
dedicated PCs):

grinder.jvmargunents = - Xms3g - Xmx3g - XX: NewSi ze=2g - XX: MaxNewSi ze=2¢g

-verbose: gc - XX: +Print GCDet ai |l s - XX: +Pri nt GCTi meSt anps - XX: +UseConcMar kSweepGC

- XX: +UsePar NewGC - XX: +Expl i ci t GCl nvokesConcurrent - XX: +CMsConcur r ent MTEnabl ed

- XX: +Al waysPr eTouch
NewSi ze is set proportionally large (67% of the heap size) as Jython seems to create
alot of short lived objects. CMSis used as it attempts to minimise GC pause times
at the cost of transactional throughput. Pr et ouch isused to ensure the VM isless
likely to be paused waiting for memory pages from the Linux kernel.

2. Scale your Grinder clients horizontally (i.e. lots of cheap PCs) rather than vertically
(i.e. big expensive multi-socket servers).

3. Keep avery close eye on the GC times reported by each Grinder's GC log. If The
Grinder starts timing a request, pauses for GC, and then ends timing a request, some
unknown amount of GC time will be added to the response time reported. GC times
of 200ms are not uncommon, and GC pauses of 5 seconds can be produced by poorly
tuned GCs. Under Linux, to redirect GC logs from stdout invoke the Java worker as
follows:

java net.grinder.Ginder $GR NDERPROPERTI ES >> wor ker_out.| og 2>&1

The 2>&1 also redirects (http://tldp.org/L DP/abs/html/io-redirection.html) any errors
towor ker _out . | og.
To directly specify a GC log add the following JVM argument

Page 99

http://tldp.org/LDP/abs/html/io-redirection.html

- Xl oggc: /tnp/ gc_| og

The Grinder 3

Make sure the VM can write to the log file specified.

2.10 Features of The Grinder 3

Thanks to Edwin DeSouza for his help in compiling this feature list.

Last updated: 4 October 2011

2.10.1 Capabilities of The Grinder

Load Testing

Capacity Testing

Functional Testing

Stress Testing

2.10.2 Open Source

BSD stylelicense

Dependencies

2.10.3 Standards

100% Pure Java

Web Browsers

Web Services

Load Testing determines if an application can
support a specified load (for example, 500
concurrent users) with specified response times.
Load Testing is used to create benchmarks.

Capacity Testing determines the maximum load
that an application can sustain before system
failure.

Functional Testing proves the correct behaviour of
an application.

Stress Testing is load testing over an extended
period of time. Stress Testing determinesif an
application can meet specified goals for stability
and reliability, under a specified load, for a
specified time period.

The Grinder is distributed under aBSD style
license.

The Grinder depends on a number of other open

source products including

e Jython (http://www.jython.org/)

e HTTPClient (http://www.innovation.ch/java/
HTTPClient/)

« JEdit Syntax (http://syntax.jedit.org/)

e Apache XMLBeans (http://
xmlbeans.apache.org/)

e PicoContainer (http://picocontainer.org/)

e Clojure (http://clojure.org/)

The Grinder works on any hardware platform and
any operating system that supports J2SE 1.4 and
above.

The Grinder can simulate web browsers and other
devicesthat use HTTP, and HTTPS.

The Grinder can be used to test Web Service
interfaces using protocols such as SOAP and XML-
RPC.

Page 100

http://www.jython.org/
http://www.innovation.ch/java/HTTPClient/
http://syntax.jedit.org/
http://xmlbeans.apache.org/
http://picocontainer.org/
http://clojure.org/

Database

Middleware

Other Internet protocols

2.10.4 The Grinder Architecture

Goal

Multi-threaded, multi-process

Distributed

Scalable

2.10.5 Console

Graphical Interface

Process coordination

Process monitoring

Internationalised and Localised

Script editing

2.10.6 Statistics, Reports, Charts

Test monitoring

Data collation

The Grinder 3

The Grinder can be used to test databases using
JDBC.

The Grinder can be used to test RPC and MOM
based systems using protocols such as 110P, RMI/
I1OP, RMI/JRMP, and IMS.

The Grinder can be used to test systems that utilise
other protocols such as POP3, SMTP, FTP, and
LDAP.

Minimize system resource requirements while
maximizing the number of test contexts ("virtual
users").

Each test context runsin its own thread. The
threads can be split over many processes depending
on the requirements of the test and the capabilities
of the load injection machine.

The Grinder makes it easy to coordinate and
monitor the activity of processes across a network
of many load injection machines from a central
console.

The Grinder typically can support several hundred
HTTP test contexts per load injection machine.
(The number varies depending on the type of test
client). More load injection machines can be added
to generate bigger loads.

100% Java Swing user interface.

Worker processes can be started, stopped and reset
from one central console.

Dynamic display of current worker processes and
threads.

English, French, Spanish, and German translations
are supplied. Users can add their own tranglations.

Central editing and management of test scripts.

Pre-defined charts for response time, test
throughput. Display the number of invocations, test
result (pass/fail), average, minimum and maximum
values for response time and tests per second for
each test.

Collates data from worker processes. Data can
be saved for import into a spreadsheet or other
analysistoal.

Page 101

Instrument anything

Statistics engine

2.10.7 Script

Record real users

Powerful scripting in Python

Multiple scenarios

Access to any Java APl

Parameterization of input data

Content Verification

2.10.8 The Grinder Plug-ins

HTTP

Custom

2.10.9 HTTP Plug-in
HTTP1.0,HTTP 1.1
HTTPS

Cookies

Multi-part forms

The Grinder 3

The Grinder records statistics about the number of
times each test has been called and the response
times achieved. Any part of the test script can be
marked as a test.

Scripts can declare their own statistics and report
against them. The values will appear in the console
and the data logs. Composite statistics can be
specified as expressions involving other statistics.

Scripts can be created by recording actions of areal
user using the TCP Proxy. The script can then be
customised by hand.

Simple to use but powerful, fully object-oriented
scripting.

Arbitrary looping and branching allows the
simulation of multiple scenarios. Simple scenarios
can be composed into more complex scenarios. For
example, you might allocate 10% of test contexts
to alogin scenario, 70% to searching, 10% to
browsing, and 10% to buying; or you might have
different workloads for specific times of aday.

Test scripts can directly access any Java API.

Input data (e.g. URL parameters, form fields)
can be dynamically generated. The source of the
data can be anything including flat files, random
generation, a database, or previously captured
output.

Scripts have full access to test results. In the future,
The Grinder will include support for enhanced
parsing of common results such asHTML pages.

The Grinder has special support for HTTP that
automatically handles cookie and connection
management for test contexts.

Users can write their own plug-ins to a documented
interface; although thisisrarely necessary due to
the powerful scripting facilities.

Support for both HTTP1.0and HTTP 1.1 is
provided.

The Grinder supports HTTP over SSL.
Full support for Cookiesis provided.

The Grinder supports multi-part forms.

Page 102

Connection throttling

2.10.10 TCP Proxy

TCP proxy

HTTP Proxy

SSL Support

Filter-based architecture

2.10.11 Documentation

User Guide

FAQs

Tutorial

Script Gallery

Articles

Commercial books

2.10.12 Support

Mailing Lists

The Grinder 3

Low bandwidth client connections can be
simul ated.

A TCP proxy utility is supplied that can be used to
intercept system interaction at the protocol level. It
is useful for recording scripts and as a debugging
tool.

The TCP proxy can be configured asan HTTP/
HTTPS proxy for easy integration with web
browsers.

The TCP proxy can simulate SSL sessions.

The TCP proxy has a pluggable filter architecture.
Users can write their own filters.

http://grinder.sourceforge.net/g3/getting-
started.html (../g3/getting-started.html)

http://grinder.sourceforge.net/fag.html (../fag.html)

http://grinder.sourceforge.net/g3/tutorial-perks.html
(../g3/tutorial-perks.html)

http://grinder.sourceforge.net/g3/script-gallery.html
(../g3/script-gallery.html)

http://grinder.sourceforge.net/links.html (../
links.html)

Professional Java 2 Enterprise Edition with BEA
WebLogic Server
J2EE Performance Testing (../links.html#book)

grinder-use@lists.sourceforge.net (mailto:grinder-
use@lists.sourceforge.net)

grinder-devel opment@lists.sourceforge.net

(' mailto:grinder-
development@lists.sourceforge.net)
grinder-announce@lists.sourceforge.net

(' mailto:grinder-announce@lists.sourceforge.net)

Page 103

../g3/getting-started.html
../g3/getting-started.html
../faq.html
../g3/tutorial-perks.html
../g3/script-gallery.html
../links.html
../links.html#book
mailto:grinder-use@lists.sourceforge.net
mailto:grinder-development@lists.sourceforge.net
mailto:grinder-announce@lists.sourceforge.net

	Table of contents
	1 Project
	1.1 The Grinder, a Java Load Testing Framework
	1.1.1 What is The Grinder?
	1.1.1.1 Key features
	1.1.1.2 Dynamic Scripting
	1.1.1.3 History

	1.1.2 Authors
	1.1.3 Credits

	1.2 The Grinder License
	1.2.1 The Grinder
	1.2.2 HTTPClient
	1.2.3 Jython
	1.2.4 jEdit Syntax
	1.2.5 Apache XMLBeans
	1.2.6 PicoContainer
	1.2.7 ASM
	1.2.8 JSR 166y
	1.2.9 SLF4J
	1.2.10 Logback
	1.2.11 Clojure
	1.2.12 Ring
	1.2.13 Compojure
	1.2.14 ring-middleware-format
	1.2.15 Jetty
	1.2.16 Clojure tools.logging
	1.2.17 Supporting license text
	1.2.17.1 jEdit Syntax copyright and usage statement
	1.2.17.2 XMLBeans NOTICE
	1.2.17.3 PicoContainer License

	1.3 Downloading The Grinder
	1.3.1 Download
	1.3.1.1 What else do I need?

	1.3.2 Downloading The Grinder using Maven

	1.4 Support
	1.4.1 Mailing lists

	1.5 External references
	1.5.1 Related Software Projects
	1.5.2 Articles
	1.5.3 Commercials
	1.5.3.1 Synoty
	1.5.3.2 Perfmetrix
	1.5.3.3 Anser Enterprise
	1.5.3.4 TestPros
	1.5.3.5 swtest-discuss
	1.5.3.6 J2EE Performance Testing

	2 The Grinder 3
	2.1 Getting started
	2.1.1 The Grinder processes
	2.1.2 Tests and test scripts
	2.1.3 Network communication
	2.1.4 Output
	2.1.5 How do I start The Grinder?

	2.2 Agents and Workers
	2.2.1 Agents and Workers
	2.2.1.1 Agent processes
	2.2.1.1.1 Summary of agent process options

	2.2.1.2 Worker processes

	2.2.2 The Grinder 3 Properties File
	2.2.2.1 Table of properties
	2.2.2.2 Specifying properties on the command line

	2.2.3 Logging
	2.2.3.1 Introduction
	2.2.3.2 Changing the Logback configuration
	2.2.3.3 Logging data to a database
	2.2.3.4 Writing a custom appender for data logs
	2.2.3.4.1 Improving database logging performance
	2.2.3.4.2 Customising data log output

	2.3 The Console
	2.3.1 The Console User Interface
	2.3.1.1 Process controls
	2.3.1.2 Sample controls
	2.3.1.3 The Graphs and Results tabs
	2.3.1.3.1 Graphs
	2.3.1.3.2 Results

	2.3.1.4 Processes tab
	2.3.1.5 Script tab
	2.3.1.5.1 Set the directory for the script distribution
	2.3.1.5.2 Create a script and a property file
	2.3.1.5.3 Select the properties file to use
	2.3.1.5.4 Distribute the changed files to the agents
	2.3.1.5.5 Start the Worker processes

	2.3.1.6 Internationalisation help wanted

	2.3.2 The Console Service
	2.3.2.1 Overview
	2.3.2.2 Configuration
	2.3.2.2.1 Running without a GUI
	2.3.2.2.2 Setting the HTTP address and port on the command line

	2.3.2.3 The REST interface
	2.3.2.3.1 Available services

	2.3.2.4 Example session
	2.3.2.4.1 Starting up
	2.3.2.4.2 Setting the properties
	2.3.2.4.3 Connecting an agent
	2.3.2.4.4 Starting the workers
	2.3.2.4.5 Obtaining the results
	2.3.2.4.6 Conclusion

	2.4 The TCPProxy
	2.4.1 Starting the TCPProxy
	2.4.2 Preparing the Browser
	2.4.3 Using the EchoFilter
	2.4.4 Using the HTTP TCPProxy filters
	2.4.4.1 Generating a Clojure script
	2.4.4.2 Altering the output with custom stylesheet
	2.4.4.3 How to offset test numbers
	2.4.4.4 How to record additional headers

	2.4.5 SSL and HTTPS support
	2.4.5.1 Custom certificates

	2.4.6 Using the TCPProxy with other proxies
	2.4.7 Using the TCPProxy as a port forwarder
	2.4.8 Summary of TCPProxy options

	2.5 Scripts
	2.5.1 Scripts
	2.5.1.1 Jython and Python
	2.5.1.1.1 Alternative languages

	2.5.1.2 Jython scripting
	2.5.1.2.1 Script structure
	2.5.1.2.2 Canonical test script structure
	2.5.1.2.3 Automatically generating scripts

	2.5.1.3 Tests
	2.5.1.4 The Grinder script API
	2.5.1.5 Working directory
	2.5.1.5.1 Distributing Java code

	2.5.2 Jython
	2.5.2.1 Scripts
	2.5.2.1.1 Importing modules

	2.5.2.2 The Jython distribution and installation
	2.5.2.2.1 Setting the Jython cache directory
	2.5.2.2.2 Using an alternative Jython version.

	2.5.3 Clojure
	2.5.3.1 How to use Clojure
	2.5.3.2 Clojure scripting
	2.5.3.2.1 Script structure
	2.5.3.2.2 Canonical test script structure
	2.5.3.2.3 Recording an HTTP script

	2.5.4 Script Instrumentation
	2.5.4.1 About Instrumentation
	2.5.4.2 Supported targets
	2.5.4.3 Selective instrumentation
	2.5.4.4 Troubleshooting Instrumentation

	2.5.5 Coordination
	2.5.5.1 Barriers
	2.5.5.1.1 Sample script
	2.5.5.1.2 Barrier scope
	2.5.5.1.3 Barrier life cycle

	2.5.6 Script Gallery
	2.5.6.1 Hello World
	2.5.6.2 Simple HTTP example
	2.5.6.3 Recording many HTTP interactions as one test
	2.5.6.4 HTTP/J2EE form based authentication
	2.5.6.5 HTTP digest authentication
	2.5.6.6 HTTP cookies
	2.5.6.7 HTTP multipart form submission
	2.5.6.8 Enterprise Java Beans
	2.5.6.9 Grinding a database with JDBC
	2.5.6.10 Simple HTTP Web Service
	2.5.6.11 JAX-RPC Web Service
	2.5.6.12 XML-RPC Web Service
	2.5.6.13 Hello World, with functions
	2.5.6.14 The script life cycle
	2.5.6.15 Accessing test statistics
	2.5.6.16 Java Message Service - Queue Sender
	2.5.6.17 Java Message Service - Queue Receiver
	2.5.6.18 Using The Grinder with other test frameworks
	2.5.6.19 Email
	2.5.6.20 Run test scripts in sequence
	2.5.6.21 Run test scripts in parallel
	2.5.6.22 Thread ramp up
	2.5.6.23 Hello World in Clojure

	2.6 Plug-ins
	2.6.1 The HTTP Plug-in
	2.6.1.1 What's it for?
	2.6.1.2 Controlling the HTTPPlugin
	2.6.1.2.1 Levels of Control
	2.6.1.2.2 Importing the HTTPPluginControl
	2.6.1.2.3 Setting HTTPClient Authorization Module
	2.6.1.2.4 Setting an HTTP proxy
	2.6.1.2.5 Setting HTTP Headers
	2.6.1.2.6 Setting Encoding
	2.6.1.2.7 Setting Redirect Behaviour
	2.6.1.2.8 Setting Local Address
	2.6.1.2.9 Setting Timeout Value
	2.6.1.2.10 Setting Cookie Behaviour
	2.6.1.2.11 Automatic decompression of gzipped responses
	2.6.1.2.12 Streaming requests and response

	2.6.1.3 Using HTTPUtilities
	2.6.1.3.1 Setting Basic Authorization
	2.6.1.3.2 Getting the Last Response
	2.6.1.3.3 Getting a Token Value from a Location URI
	2.6.1.3.4 Getting a Token Value from a URI in the Body of the Response

	2.7 Statistics
	2.7.1 Standard statistics
	2.7.2 Distribution of statistics
	2.7.3 Querying and updating statistics
	2.7.4 Registering new expressions

	2.8 SSL Support
	2.8.1 Before we begin
	2.8.1.1 Performance
	2.8.1.2 The Grinder's SSL implementation is not secure

	2.8.2 Controlling when new SSL sessions are created
	2.8.3 Using client certificates
	2.8.4 FAQ
	2.8.5 Picking a certificate from a key store [Advanced]
	2.8.6 Debugging

	2.9 Advice
	2.9.1 How should I set up a project structure for The Grinder?
	2.9.2 A Step-By-Step Script Tutorial
	2.9.2.1 Introduction
	2.9.2.2 Script Imports
	2.9.2.3 Test Definition
	2.9.2.4 Bread crumbs
	2.9.2.5 The Test Interface
	2.9.2.6 Using the Dictionary and Random Python Modules
	2.9.2.7 Forget the Java IO Package when Handling Files
	2.9.2.8 Sending the Request and the Statistics API
	2.9.2.9 Full Script Listing

	2.9.3 Weighted Distribution Of Tests
	2.9.3.1 Introduction
	2.9.3.2 Statement Of The Problem
	2.9.3.3 Test Cases
	2.9.3.4 Weight Distribution Definition
	2.9.3.5 Accumulator Function
	2.9.3.6 Random Numbers
	2.9.3.7 Test Runner Class
	2.9.3.8 Putting It All Together
	2.9.3.9 Full Script Listing

	2.9.4 Garbage Collection
	2.9.4.1 Introduction
	2.9.4.2 Testing
	2.9.4.3 Conclusions

	2.10 Features of The Grinder 3
	2.10.1 Capabilities of The Grinder
	2.10.2 Open Source
	2.10.3 Standards
	2.10.4 The Grinder Architecture
	2.10.5 Console
	2.10.6 Statistics, Reports, Charts
	2.10.7 Script
	2.10.8 The Grinder Plug-ins
	2.10.9 HTTP Plug-in
	2.10.10 TCP Proxy
	2.10.11 Documentation
	2.10.12 Support

