Scripts

Table of contents
1 Jython @nd PythoN...........ooiiiiee s
1.1 AIternNative [aNQUAGES.........ccoueiiiieiie ettt e enre e
P Y1 00 IS 1 oo TS
P S o] o1 1 o (1= S
2.2 Canonical teSt SCrPL SLIUCTUE........ccueieeiecie ettt
2.3 Automatically generating SCrPLS.......urererireriereeriese sttt

4 The Grinder SCHPL APlot re e
I TAT L0 € T o e (1= ox (o] Y2
5.1 Distributing Java COOR..........ccoieieiieciece et ns

Scripts

This section describes The Grinder 3 scripting API. If you've used The Grinder 2 for
HTTP testing and you're not a programmer, you might be a bit daunted. Don't worry, its
just as easy to record and replay HTTP scripts with The Grinder 3.

1 Jython and Python

The default scripting engine is Jython - the Java implementation of Python. Pythonis
powerful, popular and easy on the eye. If you've not seen any Python before, take alook
at the script gallery (../g3/script-gallery.html) and Richard Perks tutorial (../g3/tutorial-
perks.html) to get ataste of what itslike. There are plenty of resources on the web, here
are afew of them to get you started:

* The Jython home page (http://www.jython.org/)
* The Python language web site (http://www.python.org/)
» Ten Python pitfalls (http://zephyrfal con.org/labs/python_pitfalls.html)

| recommend the Jython Essentials (http://www.amazon.com/exec/obidos/tg/
detail/-/0596002475/qid%3D1044795121/103-7145719-3118225) book; you can read the
introductory chapter (http://www.oreilly.com/catal og/jythoness/chapter/chO1.html) for
free.

1.1 Alternative languages

The Grinder 3.6 and later support test scripts written in Clojure (../g3/
tcpproxy.html#clojure-script) .

Ryan Gardner has written an add-on script engine for Groovy (http://code.google.com/p/
grinder-maven-plugin) .

2 Jython scripting

2.1 Script structure

Jython scripts must conform to afew conventions in order to work with The Grinder
framework. I'll lay the rules out in fairly dry terms before proceeding with an example.
Don't worry if this makes no sense to you at first, the examples are much easier to
comprehend.

1. Scriptsmust defineaclasscalled Test Runner

When aworker process starts up it runs the test script once. The test script must
defineaclass called Test Runner . The Grinder engine then creates an instance of
Test Runner for each worker thread. A thread's TestRunner instance can be used to
store information specific to that thread.

Although recommended, strictly Test Runner doesn't need to be a class. See the Hello

World with Functions (../g3/script-gallery.html#helloworl dfunctions.py) example.
2. TheTest Runner instance must be callable

A Python object iscallableif it definesa___cal | __ method. Each worker

thread performs a number of runs of the test script, as configured by the property
gri nder . r uns. For each run, the worker thread callsits Test Runner ; thusthe
__cal |l __ method can be thought of as the definition of arun.

Page 2

../g3/script-gallery.html
../g3/tutorial-perks.html
http://www.jython.org/
http://www.python.org/
http://zephyrfalcon.org/labs/python_pitfalls.html
http://www.amazon.com/exec/obidos/tg/detail/-/0596002475/qid%3D1044795121/103-7145719-3118225
http://www.oreilly.com/catalog/jythoness/chapter/ch01.html
../g3/tcpproxy.html#clojure-script
http://code.google.com/p/grinder-maven-plugin
../g3/script-gallery.html#helloworldfunctions.py
../g3/script-gallery.html#helloworldfunctions.py

Scripts

3. Thetest script can access servicesthrough thegri nder object

The engine makes an object called gr i nder available for the script to
import. It can also be imported by any modules that the script calls. Thisisan
instance of the Grinder.ScriptContext (.././g3/script-javadoc/net/grinder/script/
Grinder.ScriptContext.html) class and provides access to context information (such as
the worker thread 1D) and services (such as logging and statistics).

4. Thescript filenamemust end in . py

The file name suffix is used to identify Jython scripts.

2.2 Canonical test script structure

Thisis an example of a script that conforms to the rules above. It doesn't do very much -
every run will log Hello World to the worker process log.

fromnet.grinder.script.Ginder inport grinder

An instance of this class is created for every thread.
cl ass Test Runner:
This nethod is called for every run.
def __call__(self):
Per thread scripting goes here.
grinder.logger.info("Hello World")

2.3 Automatically generating scripts

If you are creating a script for awebsite or web application, you can use the TCPProxy
(../g3/tcpproxy.html#HTTPPIuginT CPProxyFilter) to generate an HT TPPlugin script
suitable for use with The Grinder.

3 Tests

Although our simple test script can be used with The Grinder framework and can easily
be started in many times in many worker processes on many machines, it doesn't report
any statistics. For this we need to create some tests. A Test (.././g3/script-javadoc/net/
grinder/script/Test.html) has a unique test number and description. If you are using the
console (../g2/console.html) , it will update automatically to display new Test sasthey
are created.

Let'sadd aTest to our script.

fromnet.grinder.script inmport Test
fromnet.grinder.script.Ginder inport grinder

Create a Test with a test nunmber and a description.
testl = Test(1l, "Log method")

cl ass Test Runner:
def __call__(self):
grinder.logger.info("Hello Wrld")

Here we have created asingle Test with the test number 1 and the description Log
method. Note how we import thegr i nder object and the Test classinasimilar
manner to Java.

Now the console knows about our Test , but we're still not using it to record anything.
Let'srecord how long our gr i nder . | ogger . i nf o method takes to execute.

Page 3

.././g3/script-javadoc/net/grinder/script/Grinder.ScriptContext.html
../g3/tcpproxy.html#HTTPPluginTCPProxyFilter
.././g3/script-javadoc/net/grinder/script/Test.html
../g2/console.html

Scripts

Test . r ecor d adds the appropriate instrumentation code to the byte code of method.
The time taken and the number of calls will be recorded and reported to the console.

fromnet.grinder.script inport Test
fromnet.grinder.script.Ginder inport grinder

testl = Test(1l, "Log method")

Instrunment the info() method with our Test.
testl.record(grinder.|ogger.info)

cl ass Test Runner:
def __call__(self):
grinder.logger.info("Hello Wrld")

Thisisacomplete test script that works within The Grinder framework and reports results
to the console.

Y ou're not restricted to instrument method calls. In fact, it's more common to instrument
objects. Here's an example using The Grinder's HTTP plug-in (../g3/http-plugin.html) .

A sinple exanple using the HTTP plugin that shows the retrieval of a
single page via HTTP.

fromnet.grinder.script inmport Test
fromnet.grinder.script.Ginder inport grinder
fromnet.grinder.plugin.http inmport HTTPRequest

testl = Test(1, "Request resource")
request1l = HTTPRequest ()
testl.record(requestl)

cl ass Test Runner:
def __call__(self):
result = requestl. GET("http://Ilocal host: 7001/ ")

4 The Grinder script API

With what you've seen already you have the full power of Jython at your finger tips. You
can use practically any Java or Python code in your test scripts.

The Grinder script API can be used to access services from The Grinder. The Javadoc
(.././g3/script-javadoc/index.html) contains full information on all the packages, classes
and interfaces that make up the core API, as well as additional packages added by the
shipped plug-ins. This section provides overview information on various areas of the API.
See also the HTTP plugin documentation (../g3/http-plugin.html) .

Thenet.grinder.script (.././g3/script-javadoc/net/grinder/script/package-
summary.html) package

An instance of Grinder.ScriptContext (.././g3/script-javadoc/net/grinder/script/
Grinder.ScriptContext.html) called gr i nder isautomatically available to all scripts.
This object provides access to context information and acts a starting point for
accessing other services. The instance can be explicitly imported from other Python
modulesasnet . gri nder. scri pt. Ginder. gri nder.

We have described the use of the Test (.././g3/script-javadoc/net/grinder/script/
Test.html) class above.

Page 4

../g3/http-plugin.html
.././g3/script-javadoc/index.html
../g3/http-plugin.html
.././g3/script-javadoc/net/grinder/script/package-summary.html
.././g3/script-javadoc/net/grinder/script/Grinder.ScriptContext.html
.././g3/script-javadoc/net/grinder/script/Test.html

Scripts

The Statistics (.././g3/script-javadoc/net/grinder/script/Stati stics.html) interface allows
scripts to query and modify statistics (../g3/statistics.html) , provide custom statistics,
and register additional views of standard and custom statistics.

The net.grinder.common (.././g3/script-javadoc/net/grinder/common/package-
summary.html) package

This package contains common interfaces and utility classes that are used throughout
The Grinder and that are also useful to scripts.

5 Working directory

When the script has been distributed using the console, the working directory (CWD) of
the worker process will be the local agent's cache of the distributed files. This allows the
script to conveniently refer to other distributed files using relative paths.

Otherwise, the working directory of the worker process will be that of the agent process
that started it.

5.1 Distributing Java code

You can add Javaj ar or. cl ass filesto your console distribution directory and use
the file distribution mechanism to push the code to the agent's cache. Use relative paths
andthegri nder.jvm cl asspat h property to add the files to the worker process
CLASSPATH.

For example, you might distribute the following files

grinder.properties

nyscri pt. py
lib/nyfile.jar

wheregr i nder . properti es contains:

grinder.script=nyscript.py
grinder.jvmclasspath=lib/nyfile.jar

Page 5

.././g3/script-javadoc/net/grinder/script/Statistics.html
../g3/statistics.html
.././g3/script-javadoc/net/grinder/common/package-summary.html

	Table of contents
	1 Jython and Python
	1.1 Alternative languages

	2 Jython scripting
	2.1 Script structure
	2.2 Canonical test script structure
	2.3 Automatically generating scripts

	3 Tests
	4 The Grinder script API
	5 Working directory
	5.1 Distributing Java code

