
Copyright © 2013 Philip Aston, Calum Fitzgerald All rights reserved.

The HTTP Plug-in

Table of contents

1 HTTP plug-in class...2

2 HTTP plug-in properties...2

 2.1 What's a String Bean?...3

3 HTTPClient...4

 3.1 HTTPClient versus HttpURLConnection..4

4 How do I use HTTPS?... 5

5 How do I use the HTTPS plug-in? (HttpURLConnection implementation only)...... 5

The HTTP Plug-in

Page 2Copyright © 2013 Philip Aston, Calum Fitzgerald All rights reserved.

1 HTTP plug-in class

To use the HTTP plug-in, specify:

grinder.plugin=net.grinder.plugin.http.HttpPlugin

2 HTTP plug-in properties

This table lists the HTTP plug-in properties that you can set in grinder.properties
in addition to the core properties (../g3/properties.html) . You can use the TCPSniffer to
record (../g2/tcpsniffer.html#HttpPluginSnifferFilter) HTTP plug-in scripts.

grinder.test0.parameter.url The URL to call. The HTTP GET method is used
unless grinder.test0.parameter.post
is specified. The contents of the file can be
varied using a string bean, see this FAQ (../
faq.html#post-and-string-beans) .

grinder.test0.parameter.post Specify a file containing POST data to send. The
value can be varied using a string bean.

grinder.test0.parameter.header.name (Where name can be an arbitrary string). Add a
name: header to the request with the specified
value. The value can be varied using a string bean.

grinder.plugin.parameter.stringBean Fully qualified class name of a Java bean that can
generate dynamic strings. See What's a String
Bean?.

grinder.test0.parameter.ok Fail if the returned page doesn't contain this string.
The value can be varied using a string bean.

grinder.test0.parameter.basicAuthenticationRealm
grinder.test0.parameter.basicAuthenticationUser
grinder.test0.parameter.basicAuthenticationPassword

Used together, these specify an HTTP BASIC
authentication header that will be sent with the
request. If you specify one of these values, you
must specify all three.

Note, the default HTTPClient implementation only
sends this if challenged by the server, as a browser
would, and the specified basicAuthenticationRealm
must match the realm required by the WWW-
Authenticate header in the challenge. The values
can be varied using a string bean.

grinder.plugin.parameter.useCookies Set to false to disable cookie handling (it
defaults to true).

grinder.plugin.parameter.disablePersistentConnectionsSet to true to send a Connection:
close message with every request. See
http://www.innovation.ch/java/HTTPClient/
advanced_info.html#pers_con. Only works with
the default HTTPClient implementation. The
default is false.

grinder.plugin.parameter.followRedirectsSet to true to automatically follow redirects, so
you don't have to have additional URLs in you
scripts. The default is false. You should always
set this to false for TCPSniffer generated scripts.

../g3/properties.html
../g2/tcpsniffer.html#HttpPluginSnifferFilter
../faq.html#post-and-string-beans
http://www.innovation.ch/java/HTTPClient/advanced_info.html#pers_con
http://www.innovation.ch/java/HTTPClient/advanced_info.html#pers_con

The HTTP Plug-in

Page 3Copyright © 2013 Philip Aston, Calum Fitzgerald All rights reserved.

If you are using WebLogic Server and Web
Application form-based authentication you leave
this property set to false. This is because a redirect
request that follows authentication contains a key
cookie - setting the property to true prevents the
cookie from being picked up by the plug-in.

grinder.useHTTPClient Controls which of the two different HTTP libraries
the HTTP plug-in uses. The default value is true,
meaning that the HTTPClient implementation
should be used.

2.1 What's a String Bean?

When using the HTTP plug-in, it is often necessary to parametrise parts of URLs, POST
data, and other request strings. The easy way to do this is to use a string bean - a Java
Bean that returns Strings from its get methods.

For example, suppose you wanted to modify the URL http://myhost/test.jsp?
n=1 such that n is set to a random number each time? Easy! Here's how.
1. Write a simple bean:

// MyStringBean.java
package mystuff;

import java.util.Random;

public class MyStringBean {
 private Random m_random = new Random();

 public String getRandomInteger() {
 return Integer.toString(m_random.nextInt());
 }
}

2. Compile this and put it in your CLASSPATH. Then alter your
grinder.properties to include this line:

grinder.plugin.parameter.stringBean=mystuff.MyStringBean

3. Alter the test URL parameter as follows:

grinder.test0.parameter.url=http://myhost/test.jsp?n=<getRandomInteger>

The <beanMethodName> syntax can be used in URL strings, POST data files, HTTP
headers and in OK strings. It must correspond to a public method of the string bean
that takes no parameters and returns a String.

The HTTP plug-in is relaxed about a partial string bean tag matches (for example
<notAMethod> or <abc<def>xyz>); if it can't find a suitable match it simply
outputs the literal text. This allows string bean tags to be used within XML POST data. If
you find that your string bean is not invoked when you expect it to be, use the TCPSniffer
(../g2/tcpsniffer.html) to find out what is actually being sent and check your spelling.

Each string bean instance is instantiated per thread, and maintains its state between
invocations. If your bean needs additional information regarding the test life cycle
(for example, to reset a counter and the beginning of a cycle), it can implement the

../g2/tcpsniffer.html

The HTTP Plug-in

Page 4Copyright © 2013 Philip Aston, Calum Fitzgerald All rights reserved.

net.grinder.plugin.http.StringBean interface. See the examples in
net.grinder.plugin.http.example.

Advanced string beans can implement the
net.grinder.plugin.http.StringBean and/or
net.grinder.plugin.http.HTTPClientResponseListener interfaces to
receive callbacks about the test life cycle. See the examples in src/net/grinder/
plugin/http/example.

3 HTTPClient

The HTTP plugin has two implementations. The default implementation is based on
Ronald Tschalär's excellent HTTPClient library. An alternative implementation which
uses the JDK's HttpURLConnection can also be used, but is deprecated and will be
removed from The Grinder in a future release. If you really want to you can specify that
the HTTP plug-in should use HttpURLConnection instead of HTTPClient:

grinder.plugin.parameter.useHTTPClient=false

I highly recommend the HTTPClient implementation, see below for some reasons why.
However the HttpURLConnection implementation has two features that the HTTPClient
implementation doesn't. The first feature is an additional parameter:

grinder.plugin.parameter.useCookiesVersionStringSet to false to remove the $Version string
from cookies (it defaults to true). This is to work
around broken (?) JRun 2.3.3. behaviour.

The HTTPClient cookie support is damn good, so this probably isn't an issue. It will be
fixed if it turns out to be a problem.

The second additional feature is the reporting of the mean time to first byte statistic
in addition to the normal total transaction time statistic. This will be supported by the
HTTPClient implementation in a future release.

3.1 HTTPClient versus HttpURLConnection

HTTPClient has many more features than HttpURLConnection, see http://
www.innovation.ch/java/HTTPClient/urlcon_vs_httpclient.html (http://
www.innovation.ch/java/HTTPClient/urlcon_vs_httpclient.html) for a comparison. I hope
to lever features such as proxy support, connection timeouts and persistent cookies into
future versions of The Grinder.

You can access many HTTPClient features by setting system properties. See http://
www.innovation.ch/java/HTTPClient/advanced_info.html for a list of properties. For
example, you can force HTTPClient to use HTTP 1.0 instead of HTTP 1.1 with the
following parameter:

grinder.jvm.arguments=-DHTTPClient.forceHTTP_1.0=true

One of the key advantages for The Grinder is that HTTPClient allows explicit control
of connection management, whereas HttpURLConnection uses connection pooling
"under the covers". Because HTTPClient uses extra connections, it may appear slower -
particularly if the client and server are co-hosted (.././faq.html#timing) . However, its a
better model of reality (one cycle equals one browser session).

http://www.innovation.ch/java/HTTPClient/urlcon_vs_httpclient.html
http://www.innovation.ch/java/HTTPClient/urlcon_vs_httpclient.html
http://www.innovation.ch/java/HTTPClient/advanced_info.html
http://www.innovation.ch/java/HTTPClient/advanced_info.html
.././faq.html#timing

The HTTP Plug-in

Page 5Copyright © 2013 Philip Aston, Calum Fitzgerald All rights reserved.

In my experience, HTTPClient is much more RFC compliant, and less buggy than
HttpURLConnection.

4 How do I use HTTPS?

There are patches available to HTTPClient to work with several SSL implementations.
See http://www.innovation.ch/java/HTTPClient/https.html for details. The instructions
that follow assume you are using JSSE 1.0.3 or later.
1. If you are using an old JVM (earlier than 1.4.1), you'll need to install JSSE1.0.3

(http://www.oracle.com/technetwork/java/jsse-136410.html) . I recommend installing
the JSSE as an installed extension for simplicity.

2. Download the HTTPClient JSSE patch from http://www.innovation.ch/java/
HTTPClient/JSSE.zip

Extract the class files contained within the zip into a directory called HTTPClient,
then create a jar containing that directory:

mkdir HTTPClient; cd HTTPClient
jar xf /download/JSSE.zip
cd ..
jar cf HTTPClient-JSSE.jar HTTPClient

Add this jar to the start of your CLASSPATH before running The Grinder. Its worth
reading the file README in JSSE.zip.

3. You can now use URLs that start with https: in your grinder.properties.

You may well need to create a trust store containing CA certificates that sign the server
certificate. See the JSSE documentation for full details, here's a quick hint:

keytool -import -v -keystore ./mycastore -file d:/wls5/myserver/ca.pem

You should then add -Djavax.net.ssl.trustStore=mycastore to
grinder.jvm.arguments in your grinder.properties. Refer to the JSSE
documentation for other useful properties. In particular -Djavax.net.debug=ssl
might come in useful.

HTTPClient checks that the host name in each request URL matches the subject DN field
in the certificate. If this isn't the case, you might need to add an entry to /etc/hosts,
c:/WINNT40/system32/drivers/etc/, DNS or whatever, and then use that
hostname in the request URLs.

The JSSE SSL implementation isn't quick. This should be taken into account when
comparing round trip times, as a compiled browser version is likely to be a lot faster.

5 How do I use the HTTPS plug-in? (HttpURLConnection implementation
only)

Note:

This information applies to the deprecated HttpURLConnection implementation. For
information on using HTTPS with the default HTTPClient implementation, see above.

1. Install JSSE1.0.3 as described above.
2. In your grinder.properties, use the HttpsPlugin rather than HttpPlugin:

http://www.innovation.ch/java/HTTPClient/https.html
http://www.oracle.com/technetwork/java/jsse-136410.html
http://www.innovation.ch/java/HTTPClient/JSSE.zip
http://www.innovation.ch/java/HTTPClient/JSSE.zip

The HTTP Plug-in

Page 6Copyright © 2013 Philip Aston, Calum Fitzgerald All rights reserved.

grinder.plugin=net.grinder.plugin.http.HttpsPlugin

3. You can now use URLs that start with https: in your grinder.properties.
4. If you want two-way authentication, add the lines like:

grinder.plugin.parameter.clientCert=./philclient.p12
grinder.plugin.parameter.clientCertPassword=acrobat

You can export a P12 certificate from Netscape.

	Table of contents
	1 HTTP plug-in class
	2 HTTP plug-in properties
	2.1 What's a String Bean?

	3 HTTPClient
	3.1 HTTPClient versus HttpURLConnection

	4 How do I use HTTPS?
	5 How do I use the HTTPS plug-in? (HttpURLConnection implementation only)

