
Copyright © 2013 Philip Aston, Calum Fitzgerald All rights reserved.

Garbage Collection

Table of contents

1 Introduction...2

2 Testing...2

3 Conclusions...2

Garbage Collection

Page 2Copyright © 2013 Philip Aston, Calum Fitzgerald All rights reserved.

1 Introduction

For high transactional workloads, a significant component of The Grinder's response time
can include the performance of the Java Garbage Collector (GC), which is a necessary
component of the Java Virtual Machine (JVM) that The Grinder workers run on.

This page documents the improvements obtained by tuning garbage collection for a
particular test configuration.

Gary Mulder

2 Testing

Comparison tests were performed for an identical complex test suite (5 million requests
over 4 hours) with The Grinder deployed firstly on a single two quad core dual socket
(i.e. 8 core) server with 12GB of RAM, and secondly on four dual core PCs with 4GB of
RAM each (i.e. the same number of CPUs, but twice the sockets and so twice the memory
bandwidth). All test variables were attempted to be controlled for, and the only significant
change was The Grinder hardware used.

On the latter 4 PC configuration response times reported were 25% lower on average, and
more significantly standard deviations of response times were 25% lower as well. The
key changes between test scenarios were the change in JVM heap sizes from 1*8GB to
4*3GB, and the fact that four GCs were running simultaneously (i.e. one GC per JVM per
PC). GC is very sensitive to memory bandwidth, so with four sockets (4 x 2 core) rather
than two sockets (2 x 4 core) it is likely memory bandwidth for The Grinder was about
doubled, which in turn reduced GC pause durations. Furthermore, with four GCs running
simultaneously the times when The Grinder is subject to GC has been smoothed, which
was directly reflected in the reduced response time standard deviations.

3 Conclusions

Conclusions are as follows. Your mileage may vary:
1. Use the Sun Hotspot JVM with CMS GC (not the Java 7 G1 GC which was observed

to behave badly in some tests) with settings similar to the following (for 4GB
dedicated PCs):

grinder.jvm.arguments = -Xms3g -Xmx3g -XX:NewSize=2g -XX:MaxNewSize=2g
 -verbose:gc -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -XX:+UseConcMarkSweepGC
 -XX:+UseParNewGC -XX:+ExplicitGCInvokesConcurrent -XX:+CMSConcurrentMTEnabled
 -XX:+AlwaysPreTouch

NewSize is set proportionally large (67% of the heap size) as Jython seems to create
a lot of short lived objects. CMS is used as it attempts to minimise GC pause times
at the cost of transactional throughput. Pretouch is used to ensure the JVM is less
likely to be paused waiting for memory pages from the Linux kernel.

2. Scale your Grinder clients horizontally (i.e. lots of cheap PCs) rather than vertically
(i.e. big expensive multi-socket servers).

3. Keep a very close eye on the GC times reported by each Grinder's GC log. If The
Grinder starts timing a request, pauses for GC, and then ends timing a request, some
unknown amount of GC time will be added to the response time reported. GC times
of 200ms are not uncommon, and GC pauses of 5 seconds can be produced by poorly

Garbage Collection

Page 3Copyright © 2013 Philip Aston, Calum Fitzgerald All rights reserved.

tuned GCs. Under Linux, to redirect GC logs from stdout invoke the Java worker as
follows:

java net.grinder.Grinder $GRINDERPROPERTIES >> worker_out.log 2>&1

The 2>&1 also redirects (http://tldp.org/LDP/abs/html/io-redirection.html) any errors
to worker_out.log.
To directly specify a GC log add the following JVM argument

-Xloggc:/tmp/gc_log

Make sure the JVM can write to the log file specified.

http://tldp.org/LDP/abs/html/io-redirection.html

	Table of contents
	1 Introduction
	2 Testing
	3 Conclusions

