
Copyright © 2013 Philip Aston, Calum Fitzgerald All rights reserved.

Getting started

Table of contents

1 The Grinder processes.. 2

2 Tests and test scripts.. 3

3 Network communication...4

4 Output..4

5 How do I start The Grinder?..5

Getting started

Page 2Copyright © 2013 Philip Aston, Calum Fitzgerald All rights reserved.

Note:

This section takes a top down approach to The Grinder. If you are happy figuring things out for
yourself and want to get your hands dirty, you might like to read How do I start The Grinder?
and then jump to the Script Gallery (../g3/script-gallery.html) .

1 The Grinder processes

The Grinder is a framework for running test scripts across a number of machines. The
framework is comprised of three types of process (or program): worker processes
(../g3/agents-and-workers.html#worker-processes) , agent processes (../g3/agents-
and-workers.html#agent-processes) , and the console (../g2/console.html) . The
responsibilities of each of the process types are:

• Worker processes
• Interprets test scripts and performs the tests.

Each worker process can run many tests in parallel using a number of worker
threads.

• Agent processes
• Long running process that starts and stops worker processes as required.
• Maintains a local cache of test scripts distributed from the console.

• The Console
• Coordinates the other processes.
• Collates and displays statistics.
• Provides script editing and distribution.

As The Grinder is written in Java, each of these processes is a Java Virtual Machine
(JVM).

../g3/script-gallery.html
../g3/agents-and-workers.html#worker-processes
../g3/agents-and-workers.html#agent-processes
../g2/console.html

Getting started

Page 3Copyright © 2013 Philip Aston, Calum Fitzgerald All rights reserved.

For heavy duty testing, you start an agent process on each of several load injector
machines. The worker processes they launch can be controlled and monitored using the
console. There is little reason to run more than one agent on each load injector, but you
can if you wish.

2 Tests and test scripts

A test is a unit of work against which statistics are recorded. Tests are uniquely defined
by a test number and also have a description. Users specify which tests to run using a test
script (../g3/scripts.html) . If you wish your scripts can report many different actions (e.g.
different web page requests) against the same test, The Grinder will aggregate the results.

../g3/scripts.html
../g3/scripts.html

Getting started

Page 4Copyright © 2013 Philip Aston, Calum Fitzgerald All rights reserved.

The script is executed many times in a typical testing scenario. Each worker process has
a number of worker threads, and each worker thread calls the script a number of times. A
single execution of a test script is called a run.

You can write scripts for use with the Grinder by hand. There are a number of examples
of how to do this in the Script Gallery (../g3/script-gallery.html) . See the Scripts (../g3/
scripts.html) section for more details on how to create scripts.

If you are creating a script to test a web site or web application, you can use the
TCPProxy (../g3/tcpproxy.html#HTTPPluginTCPProxyFilter) to record a browser
session as a script.

3 Network communication

Each worker process sets up a network connection to the console to report statistics.
Each agent process sets up a connection to the console to receive commands, which it
passes on to its worker processes. The console listens for both types of connection on
a particular address and port. By default, the console listens on port 6372 on all local
network interfaces of the machine running the console.

If an agent process fails to connect to the console, or the grinder.useConsole
property is false, the agent will continue independently without the console and
automatically will start its worker processes. The worker processes will run to completion
and not report to the console. This can be useful when you want to quickly try out a test
script without bothering to start the console.

Note:

To change the console addresses, set the grinder.consoleHost and
grinder.consolePort properties in the grinder.properties (../g3/properties.html)
file before starting The Grinder agents. The values should match those specified in the console
options dialog.

4 Output

Each worker process writes logging information to a file called host-n.log, where
host is the machine host name and n is the worker process number.

Data about individual test invocations is written into a file called host-n-data.log

that can be imported into a spreadsheet tool such as Microsoft ExcelTM for further
analysis. The data file is the only place where information about individual tests is
recorded; the console displays only aggregate information.

The final statistics summary (in the log file of each process) looks something like this:

Final statistics for this process:

 Successful
 Tests Errors Mean Test Test Time
 Time (ms) Standard
 Deviation
 (ms)

Test 0 25 0 255.52 22.52
Test 1 25 0 213.40 25.15
Test 2 25 0 156.80 20.81 "Image"
Test 3 25 0 90.48 14.41
Test 4 25 0 228.68 23.97 "Login page"

../g3/script-gallery.html
../g3/scripts.html
../g3/tcpproxy.html#HTTPPluginTCPProxyFilter
../g3/tcpproxy.html#HTTPPluginTCPProxyFilter
../g3/properties.html

Getting started

Page 5Copyright © 2013 Philip Aston, Calum Fitzgerald All rights reserved.

Test 5 25 0 86.12 12.53 "Security check"
Test 6 25 0 216.20 8.89
Test 7 25 0 73.20 12.83
Test 8 25 0 141.92 18.36
Test 9 25 0 104.68 19.86 "Logout page"

Totals 250 0 156.70 23.32

The console has a dynamic display of similar information collected from all the worker
processes. Plug-ins and advanced test scripts can provide additional statistics; for
example, the HTTP plug-in adds a statistic for the content length of the response body.

Each test has one of two possible outcomes:
1. Success. The number of Successful Tests for that test is incremented The time taken to

perform the test is added to the Total.
2. Error. The execution of a test raised an exception. The number of Errors for the test is

incremented. The time taken is discarded.

The Total, Mean, and Standard Deviation figures are calculated based only on successful
tests.

5 How do I start The Grinder?

It's easy:
1. Create a grinder.properties (../g3/properties.html) file. This file specifies

general control information (how the worker processes should contact the console,
how many worker processes to use, ..), as well as the name of the test script that will
be used to run the tests.

2. Set your CLASSPATH to include the grinder.jar file which can be found in the
lib directory.

3. Start the console (../g2/console.html) on one of the test machines:

java net.grinder.Console

4. For each test machine, do steps 1. and 2. and start an agent process:

java net.grinder.Grinder

The agent will look for the grinder.properties file in the local directory. The
test script is usually stored alongside the properties file. If you like, you can specify
an explicit properties file as the first argument. For example:

java net.grinder.Grinder myproperties

The console does not read the grinder.properties file. It has its own options
dialog (choose the File/Options menu option) which you should use to set the
communication addresses and ports to match those in the grinder.properties files.
The console process controls (../g3/console.html#process-controls) can be used to trigger
The Grinder test scenario. Each agent process then creates child worker processes to do
the work.

Note:

When you know a little more about the console, you can use it to edit and distribute properties
files and scripts (../g3/console.html#Script+tab) instead of copying them to each agent machine.

../g3/properties.html
../g2/console.html
../g3/console.html#process-controls
../g3/console.html#Script+tab
../g3/console.html#Script+tab

Getting started

Page 6Copyright © 2013 Philip Aston, Calum Fitzgerald All rights reserved.

As the worker processes execute, they dynamically inform the console of the tests in the
test script. If you start the console after the agent process, you should press the Reset
processes button. This will cause the existing worker processes to exit and the agent
process to start fresh worker processes which will update the console with the new test
information.

Included below are some sample scripts, for both Unix/Linux and Windows, for starting
grinder agents, the console, and the TCPProxy (../g3/tcpproxy.html) for recording HTTP
scripts.

Windows

• setGrinderEnv.cmd

set GRINDERPATH=(full path to grinder installation directory)
set GRINDERPROPERTIES=(full path to grinder.properties)\grinder.properties
set CLASSPATH=%GRINDERPATH%\lib\grinder.jar;%CLASSPATH%
set JAVA_HOME=(full path to java installation directory)
PATH=%JAVA_HOME%\bin;%PATH%

• startAgent.cmd

call (path to setGrinderEnv.cmd)\setGrinderEnv.cmd
echo %CLASSPATH%
java -classpath %CLASSPATH% net.grinder.Grinder %GRINDERPROPERTIES%

• startConsole.cmd

call (path to setGrinderEnv.cmd)\setGrinderEnv.cmd
java -classpath %CLASSPATH% net.grinder.Console

• startProxy.cmd

call (path to setGrinderEnv.cmd)\setGrinderEnv.cmd
java -classpath %CLASSPATH% net.grinder.TCPProxy -console -http > grinder.py

Unix

• setGrinderEnv.sh

#!/usr/bin/ksh
GRINDERPATH=(full path to grinder installation directory)
GRINDERPROPERTIES=(full path to grinder.properties)/grinder.properties
CLASSPATH=$GRINDERPATH/lib/grinder.jar:$CLASSPATH
JAVA_HOME=(full path to java installation directory)
PATH=$JAVA_HOME/bin:$PATH
export CLASSPATH PATH GRINDERPROPERTIES

• startAgent.sh

#!/usr/bin/ksh
. (path to setGrinderEnv.sh)/setGrinderEnv.sh
java -classpath $CLASSPATH net.grinder.Grinder $GRINDERPROPERTIES

• startConsole.sh

#!/usr/bin/ksh
. (path to setGrinderEnv.sh)/setGrinderEnv.sh
java -classpath $CLASSPATH net.grinder.Console

• startProxy.sh

#!/usr/bin/ksh
. (path to setGrinderEnv.sh)/setGrinderEnv.sh

../g3/tcpproxy.html

Getting started

Page 7Copyright © 2013 Philip Aston, Calum Fitzgerald All rights reserved.

java -classpath $CLASSPATH net.grinder.TCPProxy -console -http > grinder.py

	Table of contents
	1 The Grinder processes
	2 Tests and test scripts
	3 Network communication
	4 Output
	5 How do I start The Grinder?

