SSL Support

Table of contents
1 BEFOrE WE DEOIN. ...ttt n e n e snennenne
I = o 00 7= o
1.2 The Grinder's SSL implementation iS NOt SECUIE..........cccceveevieeeevieecie e
2 Controlling when new SSL SeSSIoNS are Created...........occveeeevieeeesieesieseeseesieseeseeenens
3 USING ClIeNt CEMMITICALES.ccoueireeiecie st see sttt nre e

5 Picking a certificate from a key store [AdvanCed]...........ccooreririenenineniseseeeeeees
LR L= 10 o o 1 o S OUPR

SSL Support

The Grinder 3 supports the use of SSL by scripts. The Grinder 3 implements SSL using
the Java Secure Socket Extension (JSSE) included in the Java run time. When used with
the HTTP Plug-in, thisisas simpleasusing ht t ps instead of ht t p in URIs. Scripts can
obtain a suitable SSLCont ext and hencea SSLSocket Fact ory for non-HTTP use
cases, and can control the allocation of SSL sessions to worker threads.

1 Before we begin

1.1 Performance

Simulating multiple SSL sessions on a single test machine may or may not be realistic.
A typical browser running on a desktop PC has the benefit of a powerful CPU to run the
SSL cryptography. Be careful that your results aren't constrained due to inadequate test
client CPU power.

1.2 The Grinder's SSL implementation is not secure

To reduce the client side performance overhead, The Grinder deliberately accelerates SSL
initialisation by using a random number generator that is seeded with a fixed number.
Further, no validation of server certificatesis performed. Neither of these hinder SSL
communication, but they do make it less secure.

No guarantee is made as to the cryptographic strength of any SSL communication using The
Grinder.

This acceleration affects initialisation time only and should not affect timing information
obtained using The Grinder.

2 Controlling when new SSL sessions are created

By default The Grinder creates anew SSL session for each run carried out by
each worker thread. Thisisin line with the usual convention of ssimulating a
user session with aworker thread executing the part of the script defined by
Test Runner. __call __ ().

Alternatively, scripts may wish to have an SSL session per worker thread, i.e. for each
thread to reuse SSL sessions on subsequent executions of Test Runner. __call __ ().
This can be done with the SSLCont r ol . set Shar eCont ext Bet weenRuns()
method:

fromnet.grinder.script.G&inder inport grinder
grinder. SSLCont rol . shar eCont ext Bet weenRuns = 1

Thiswill cause each worker thread to reuse SSL sessions between runs.
SSL sessions will still not be shared between worker threads. Calling
set Shar eCont ext Bet weenRuns() affectsall of the worker threads.

3 Using client certificates

If aserver requests or requires a client certificate, The Grinder must have some way of
providing one - thisinvolves specifying akey store.

Page 2

SSL Support

fromnet.grinder.script.Ginder inport grinder

cl ass Test Runner:
def __call__(self):
grinder. SSLControl . setKeyStoreFil e("nykeystore.jks", "passphrase")

Itisonly validto use set Key St or eFi | e from aworker thread, and it only affects that
worker thread.

Thereisalso amethod called set Key St or e whichtakesaj ava. i 0. | nput St r eam
which may be useful if your key store doesn't live on the local file system. Both methods
have an overloaded version that allows the key store type to be specified, otherwise the
default typeisused (normally j ks).

Whenever set Key St or eFi | e, set KeySt or e, or set KeyManager s (see
below) is called, the current SSL session for the thread is discarded. Consequently,

you usually want to call these methods at the beginning of your __cal | __ () method
or fromthe Test Runner. __init__ () constructor. Setting the thread's key
storeinTest Runner. __init__ () isespecialy recommended if you caling

set Shar eCont ext Bet weenRuns(t r ue) to share SSL sessions between runs.

4 FAQ

The astute reader who is familiar with key stores may have afew questions. Here'samini

FAQ:

1. If I have several suitable certificatesin my key store, how does The Grinder chose
between them?

The Grinder relies on the VM's default Key Manager implementations. This picks a
certificate from the store based on SSL negotiation with the server. If there are several
suitable certificates, the only way to control which is used isto provide your own
KeyManager .

2. set KeySt or eFi | e hasa parameter for the key store password. What about the
pass phrase that protects the private key in the key store?

The pass phrases for keys must be the same as the key store password. Thisisa
restriction of the default KeyManager s. If you don't like this, you can provide your
own KeyManager .

3. Shouldn't | need to specify a set of certificates for trusted Certificate Authorities?

No. The Grinder does not validate certificates received from the server, so does not
need a set of CA certificates.
4. Can|l usethe propertiesj avax. net . ssl . keyStore,
j avax. net. ssl . keySt or eType, and
j avax. net . ssl . keySt or ePasswor d to specify a global keystore?

No. The Grinder does not use these properties, primarily because the JSSE does not
provide away to access its default SSL Context.

5 Picking a certificate from a key store [Advanced]

Here's an example script that provides its own X509KeyManager implementation
which controls which client certificate to use. The exampleis hard coded to always use
the certificate with the aliasnyal i as.

Page 3

SSL Support

fromcom sun. net.ssl inport KeyManager Fact ory, X509KeyManager
fromjava.io inport FilelnputStream

fromjava.security inport KeyStore

fromjarray inport array

cl ass MyManager (X509KeyManager) :
def __init__(self, keyStoreFile, keyStorePassword):
keyStore = KeyStore. getlnstance("jks")
keyStore. |l oad(Fil el nput Stream keyStoreFile), keyStorePassword)

keyManager Factory =\
KeyManager Fact ory. get | nst ance(KeyManager Fact ory. get Def aul t Al gori t hn())
keyManager Factory.init(keyStore, keyStorePassword)

Assune we have one key nmnager.
sel f. _del egate = keyManager Fact ory. keyManager s[0]

def __getattr__(self, a):
""" Some Python magic to pass on all invocations of methods we
don't define on to our del egate."""

if self.__dict__.has_key(a): return self.__dict__[a]
el se: return getattr(self._delegate, a)

def chooseCientAlias(self, keyTypes, issuers):
return "nyalias"

nmyManager = MyManager (" keystore.jks", "password")
nmyManager Array = array((nyManager,), X509KeyManager)

cl ass Test Runner:

def __call__(self):
grinder. SSLControl . set KeyManager s(nyManager Arr ay)
...
6 Debugging

When debugging SSL interactions, you may find it useful to set the following in
grinder. properties.

grinder.jvm argunent s=- Dj avax. net . debug=ssl
or -Djavax. net. debug=all

Page 4

	Table of contents
	1 Before we begin
	1.1 Performance
	1.2 The Grinder's SSL implementation is not secure

	2 Controlling when new SSL sessions are created
	3 Using client certificates
	4 FAQ
	5 Picking a certificate from a key store [Advanced]
	6 Debugging

