
Copyright © 2013 Philip Aston, Calum Fitzgerald All rights reserved.

The TCPProxy

Table of contents

1 Starting the TCPProxy..2

2 Preparing the Browser.. 3

3 Using the EchoFilter...4

4 Using the HTTP TCPProxy filters... 5

 4.1 Generating a Clojure script... 8

 4.2 Altering the output with custom stylesheet...8

 4.3 How to offset test numbers... 8

 4.4 How to record additional headers... 9

5 SSL and HTTPS support..9

 5.1 Custom certificates.. 10

6 Using the TCPProxy with other proxies.. 11

7 Using the TCPProxy as a port forwarder...12

8 Summary of TCPProxy options... 12

The TCPProxy

Page 2Copyright © 2013 Philip Aston, Calum Fitzgerald All rights reserved.

The TCPProxy is a proxy process that you can place in a TCP stream, such as the HTTP
connection between your browser and a server. It filters the request and response streams,
sending the results to the terminal window (stdout). You can control its behaviour by
specifying different filters.

The TCPProxy's main purpose is to automatically generate HTTP test scripts that can be
replayed with The Grinder's HTTP plugin. Because the TCPProxy lets you see what's
going on at a network level it is also very useful as a debugging tool in its own right.

1 Starting the TCPProxy

You start the TCPProxy with something like:

CLASSPATH=/opt/grinder/lib/grinder.jar
export CLASSPATH

java net.grinder.TCPProxy

Say java net.grinder.TCPProxy -? to get a full list of the command line
options.

With no additional options, the TCPProxy will start and display the following
information:

Initialising as an HTTP/HTTPS proxy with the parameters:
 Request filters: EchoFilter
 Response filters: EchoFilter
 Local address: localhost:8001

The TCPProxy

Page 3Copyright © 2013 Philip Aston, Calum Fitzgerald All rights reserved.

Engine initialised, listening on port 8001

This indicates that the TCPProxy is listening as an HTTP proxy on port 8001 (the
default, but you can change it with -localPort).

The TCPProxy appears to your browser just like any other HTTP proxy server, and you
can use your browser as normal. If you type http://grinder.sourceforge.net
into your browser it will display The Grinder home page and the TCPProxy will output
all of the HTTP interactions between the browser and the SourceForge site.

The TCPProxy will proxy both HTTP and HTTPS. See below for details on customising
the SSL configuration.

2 Preparing the Browser

You should now set your browser connection settings to specify the TCPProxy as the
HTTP proxy. In the browser options dialog, set the proxy host to be the host on which the
TCPProxy is running and proxy port to be 8001).

The TCPProxy

Page 4Copyright © 2013 Philip Aston, Calum Fitzgerald All rights reserved.

The relevant options dialog can be accessed by the following steps:

MSIE: Tools -> Internet Options -> Connections -> Local Area Network Settings.
Mozilla/Netscape: Edit -> Preferences -> Advanced - Proxies.
Mozilla/Firefox: Tools -> Options -> General -> Connection Settings.
Opera: Tools -> Preferences -> Advanced -> Network -> Proxy Servers.

It is important to remember to remove any "bypass proxy server" or "No Proxy for"
settings that you might have so that all the traffic flows through the TCPProxy and can be
captured.

It might also be a good idea to clear out any cache/temporary Internet files that might
be on your workstation. On the other hand, you might decide not to do this if you want
to record a script representing a frequent user to your site who has images are resources
in their browser cache (../faq.html#http-caching) . Also for IE users, changing the
temporary Internet files settings to check for a newer version on every visit to a page can
be useful.

3 Using the EchoFilter

The EchoFilter is the default filter used by the TCPProxy if no options are specified in
the startup command. The EchoFilter outputs the stream activity to the terminal. It can be
very useful for debugging as described in this FAQ (../faq.html#use-the-tcpproxy) .

Bytes that do not have a printable ASCII representation are displayed in hexadecimal
between square brackets. Here's some example output:

../faq.html#http-caching
../faq.html#http-caching
../faq.html#use-the-tcpproxy

The TCPProxy

Page 5Copyright © 2013 Philip Aston, Calum Fitzgerald All rights reserved.

------ 127.0.0.1:2263->ads.osdn.com:80 ------
GET /?ad_id=5839&alloc_id=12703&site_id=2&request_id=8320720&1102173982760 HTTP/1.1
Host: ads.osdn.com
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.0; en-US; rv:1.7.5) Gecko/20041107
 Firefox/1.0
Accept: image/png,*/*;q=0.5
Accept-Language: en-gb,en-us;q=0.7,en;q=0.3
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Proxy-Connection: keep-alive
Referer: http://sourceforge.net/projects/grinder

--- ads.osdn.com:80->127.0.0.1:2263 opened --
------ ads.osdn.com:80->127.0.0.1:2273 ------
HTTP/1.1 200 OK
Date: Sat, 04 Dec 2004 15:26:27 GMT
Server: Apache/1.3.29 (Unix) mod_gzip/1.3.26.1a mod_perl/1.29
Pragma: no-cache
Cache-control: private
Connection: close
Transfer-Encoding: chunked
Content-Type: image/gif

------ ads.osdn.com:80->127.0.0.1:2273 ------
80B
GIF89ae[00])[00D50000C3C3C3FEFDFD]hhhVVVyyy[F5CCD2D4D4D4CBCBCBD7]'F

Information lines are displayed to indicate the end point addresses and direction of the
information flow and also whether a connection has just been opened or closed.

4 Using the HTTP TCPProxy filters

You can use the TCPProxy to generate an HTTP script suitable for use with The Grinder.
The Grinder provides a pair of HTTP filters for this purpose. These filters are enabled by
the -http command line option.

The first step is to start the TCPProxy with an HTTP filter:

java net.grinder.TCPProxy -console -http > grinder.py

The > grinder.py part of the line sends the script to a file called grinder.py.

The terminal output of the TCPProxy looks like:

14/03/06 17:04:25 (tcpproxy): Initialising as an HTTP/HTTPS proxy with the
parameters:
 Request filters: HTTPRequestFilter
 Response filters: HTTPResponseFilter
 Local address: localhost:8001
14/03/06 17:04:27 (tcpproxy): Engine initialised, listening on port 8001

The console (initiated by -console) displays a simple control window that allows the
TCPProxy to be shut down cleanly. This is needed because some terminal shells, e.g.
Cygwin bash, do not allow Java processes to be interrupted cleanly, so filters cannot rely
on standard shut down hooks. The console also allows a user to add ad-hoc commentary
to the script during the recording. The console looks like this:

The TCPProxy

Page 6Copyright © 2013 Philip Aston, Calum Fitzgerald All rights reserved.

The TCPProxy console will be incorporated into the main console (../g2/console.html) in
a future release.

Set your browser to use the TCPProxy as the HTTP proxy as described earlier), and run
through your test scenario on your website.

Having finished your run through, press "Stop" on the TCPProxy console and the
generated script will be written to grinder.py.

The grinder.py file contains headers, requests and a logical grouping of requests into
pages, of the recorded tests.

For example, the headers section:

The Grinder 3.11-SNAPSHOT
HTTP script recorded by TCPProxy at 05-Jul-2012 09:20:55

from net.grinder.script import Test
from net.grinder.script.Grinder import grinder
from net.grinder.plugin.http import HTTPPluginControl, HTTPRequest
from HTTPClient import NVPair
connectionDefaults = HTTPPluginControl.getConnectionDefaults()
httpUtilities = HTTPPluginControl.getHTTPUtilities()

To use a proxy server, uncomment the next line and set the host and port.
connectionDefaults.setProxyServer("localhost", 8001)

def createRequest(test, url, headers=None):
 """Create an instrumented HTTPRequest."""
 request = HTTPRequest(url=url)
 if headers: request.headers=headers
 test.record(request, HTTPRequest.getHttpMethodFilter())
 return request

These definitions at the top level of the file are evaluated once,
when the worker process is started.

connectionDefaults.defaultHeaders = \
 [NVPair('Accept-Encoding', 'gzip, deflate'),
 NVPair('Accept-Language', 'en-gb,en;q=0.5'),
 NVPair('Cache-Control', 'no-cache'),
 NVPair('User-Agent', 'Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:13.0)
 Gecko/20100101 Firefox/13.0.1'),]

headers0= \
 [NVPair('Accept', 'text/css,*/*;q=0.1'),
 NVPair('Referer', 'http://grinder.sourceforge.net/'),]

headers1= \
 [NVPair('Accept', '*/*'),
 NVPair('Referer', 'http://grinder.sourceforge.net/'),]

headers2= \
 [NVPair('Accept', 'image/png,image/*;q=0.8,*/*;q=0.5'),
 NVPair('Referer', 'http://grinder.sourceforge.net/'),]

headers3= \
 [NVPair('Accept', 'image/png,image/*;q=0.8,*/*;q=0.5'),
 NVPair('Referer', 'http://grinder.sourceforge.net/skin/screen.css'),]

headers4= \
 [NVPair('Accept', 'image/png,image/*;q=0.8,*/*;q=0.5'),

../g2/console.html

The TCPProxy

Page 7Copyright © 2013 Philip Aston, Calum Fitzgerald All rights reserved.

 NVPair('Referer', 'http://grinder.sourceforge.net/skin/profile.css'),]

#....

In the requests section, a request object for each unique URL is created:

url0 = 'http://grinder.sourceforge.net:80'
url1 = 'http://www.ohloh.net:80'
url2 = 'http://sourceforge.net:80'

request101 = createRequest(Test(101, 'GET /'), url0)

request102 = createRequest(Test(102, 'GET profile.css'), url0, headers0)

request103 = createRequest(Test(103, 'GET screen.css'), url0, headers0)

request104 = createRequest(Test(104, 'GET print.css'), url0, headers0)

...

Note the use of the createRequest helper function, which was defined earlier. This
function creates a HTTPRequest object and instruments its GET, POST, ..., methods to
report call statistics against the supplied Test.

Finally the TestRunner class. This section groups the requests into pages and defines each
page as a method, sets the sleep interval between requests, and provides an instrumented
method for the return of data from the tests:

 # A method for each recorded page.
 def page1(self):
 """GET / (requests 101-131)."""
 result = request101.GET('/', None,
 (NVPair('Accept', 'text/html,application/xhtml+xml,application/xml;q=0.9,*/
*;q=0.8'),))
 self.token_subject = \
 httpUtilities.valueFromBodyURI('subject') # 'Feedback on The Grinder web
 site index.h...'
 self.token_sitesearch = \
 httpUtilities.valueFromHiddenInput('sitesearch') # 'grinder.sourceforge.net'

 grinder.sleep(176)
 request102.GET('/skin/profile.css')

 request103.GET('/skin/screen.css')

 request104.GET('/skin/print.css')

 request105.GET('/skin/basic.css')

#.....

 return result

 def page2(self):

#.....

 def __call__(self):
 """Called for every run performed by the worker thread."""
 self.page1() # GET / (requests 101-131)

 grinder.sleep(39)
 self.page2() # GET project_users.js (requests 201-202)
 self.page3() # GET pdfdoc.gif (requests 301-305)
 self.page4() # GET sflogo.php (request 401)
 self.page5() # GET external-link.gif (request 501)

Instrument page methods.

The TCPProxy

Page 8Copyright © 2013 Philip Aston, Calum Fitzgerald All rights reserved.

Test(100, 'Page 1').record(TestRunner.page1)
Test(200, 'Page 2').record(TestRunner.page2)

#.....

Once you've recorded your script you have two methods that you can use to replay your
script:
1. You can create a simple grinder.properties (../g3/properties.html) file and

you can replay the recorded scenario with The Grinder. Your properties file should at
least set grinder.script to grinder.py.

2. Alternately you can use the console to distribute your script to an agent and set it as
the script to run (../g3/console.html#Script+tab) . Each agent will still need a simple
grinder.properties (../g3/properties.html) file containing the console address,
though you will not need to set the grinder.script property.

The recorded script grinder.py can be edited by hand to suit your needs.

4.1 Generating a Clojure script

You can generate a Clojure script using -http clojure on the command line. For
example:

java net.grinder.TCPProxy -http clojure -console

4.2 Altering the output with custom stylesheet

The TCPProxy HTTP filters installed with -http, -http jython, and -http
clojure, each create their output by transforming an XML model of the HTTP request/
response stream using an XLST stylesheet.

These standard stylesheets can be found in etc. You can use a stylesheet of of your
own making to customise the output of the filter. You should pass the file name of your
custom stylesheet as a command line argument directly after -http.

If you want to see the intermediate XML model you can use:

java net.grinder.TCPProxy -http etc/httpToXML.xsl -console

The model confirms to the XML schema etc/tcpproxy-http.xsd.

4.3 How to offset test numbers

If sometimes useful to offset test numbers for a test script when running several different
scripts together, perhaps using the sequence (../g3/script-gallery.html#sequence.py) ,
or parallel (../g3/script-gallery.html#parallel.py) examples from the script gallery.
This gives the tests contributed by each script a distinct range of test numbers, which is
important because the test number uniquely identifies the test in the console and the data
logs.

The HTTP TCPProxy filter allows the recording of a test script with off-setting test
numbers. This is done using the HTTPPlugin.initialTest property, which can
either be set directly on the command line, or in a file using the -properties option.
Here's an example that will start the test numbers at 1000:

java -DHTTPPlugin.initialTest=1000 net.grinder.TCPProxy -http

../g3/properties.html
../g3/console.html#Script+tab
../g3/console.html#Script+tab
../g3/properties.html
../g3/script-gallery.html#sequence.py
../g3/script-gallery.html#parallel.py

The TCPProxy

Page 9Copyright © 2013 Philip Aston, Calum Fitzgerald All rights reserved.

Its also simple to offset test values by modifying the script.

Edit the recorded script to replace:

from net.grinder.script import Test

with:

from net.grinder.script import Test as StandardTest

def Test(number, description):
 # Adjust the 1000 to the appropriate offset.
 return StandardTest(number + 1000, description)

Neither technique allows different test scripts to be merged together into one because you
also have to alter the identifiers used for headers, URLs, pages, tokens, and so on. If you
want to do this, you might consider a custom stylesheet.

4.4 How to record additional headers

By default, the following HTTP headers are recorded from the HTTP stream.

• Accept
• Accept-Charset
• Accept-Encoding
• Accept-Language
• Cache-Control
• Referer
• User-Agent
• Content-Type
• If-Modified-Since
• If-None-Match

Additional headers can be specified with the HTTPPlugin.additionalHeaders
system property. The value is a comma-separated list of header names. For example:

java net.grinder.TCPProxy -DHTTPPlugin.additionalHeaders=MyHeader,AnotherHeaderName -
http

5 SSL and HTTPS support

The TCPProxy has SSL support based on Java's JSSE (http://www.oracle.com/
technetwork/java/javase/tech/index-jsp-136007.html) framework.

SSL relationships are necessarily point to point. When you interpose the TCPProxy
in SSL communications between a browser and a server you end up with two SSL
connections. Each SSL connection has its own set of client and server certificates (both of
which are optional).

http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136007.html

The TCPProxy

Page 10Copyright © 2013 Philip Aston, Calum Fitzgerald All rights reserved.

The TCPProxy will negotiate appropriate certificates for both connections using built-
in certificates or those from a user-specified Java key store. In particular, the TCPProxy
needs a self-signed server certificate for the connection from the browser. By default, the
TCPProxy will use a built-in certificate.

When first establishing a connection, your browser will present a warning and
confirmation dialog. This is because the built-in certificate isn't authorised by any of
the certificate authorities that the browser trusts. Additionally, the built-in certificate
authorises localhost so if your server doesn't listen at this address the browser will
complain. Choose the "accept this certificate for this session" option.

Warning:

The Grinder deliberately accelerates SSL initialisation by using a random number generator
that is seeded with a fixed number. This does not hinder SSL communication, but theoretically
makes it less secure. No guarantee is made as to the cryptographic strength of any SSL
communication using The Grinder.

5.1 Custom certificates

With more complicated pages, a browser may not give you the option to accept the test
certificate. In this case, you can specify your own server certificate for the connection
from the browser, or add client certificates for the connection to the server, using the -
keystore, -keystorepassword, and -keystoretype options. See the J2SE/
JSSE documentation for how to set up a key store.

If you fail to provide a key store with a valid server certificate , you may get a No
available certificate corresponds to the SSL cipher suites which are enabled exception,
and your browser may report that it cannot communicate as it has no common encryption
algorithms. Internet Explorer likes to be different. If start the TCPProxy without a valid
server certificate and then connect through it using Internet Explorer, the TCPProxy will
report "SSL peer shut down incorrectly. The browser will just spin away until it times out.
The easiest way to provide a server certificate is to copy the testkeys file from the JSSE
samples distribution (http://www.oracle.com/technetwork/java/jsse-136410.html) and
start the proxy using:

java net.grinder.TCPProxy -keyStore testkeys -keyStorePassword passphrase

http://www.oracle.com/technetwork/java/jsse-136410.html
http://www.oracle.com/technetwork/java/jsse-136410.html

The TCPProxy

Page 11Copyright © 2013 Philip Aston, Calum Fitzgerald All rights reserved.

Alfin Haji provided the following helpful write-up explaining how he solved a problem
using a custom keystore:

The site we were testing had an embedded iframe that was making a call out to
an HTTPS endpoint using an AJAX call via javascript. This endpoint was further
making a call out to another HTTPS endpoint. The self-signed cert that Grinder was
issuing was causing the following error to be thrown in developer tools of Chrome:
net::ERR_INSECURE_RESPONSE. As a result, all the content in that iframe was blank
and not being rendered (IE was throwing a content blocked error). IE developer tools was
also throwing an error in developer tools that indicated the content was in mixed security
format (HTTP and HTTPS) - SEC7111 "HTTPS security is compromised by [name of
resource]".

Now since all traffic needs to go through a local proxy (TCPProxy), and since some of
that traffic was secured, TCPProxy had to do a MITM in order to decrypt the secure
traffic. However, since TCPProxy had an untrusted cert with hostnames not matching
those endpoints that our app was calling out to, the browser generated an error.

Resolution: We created a self-signed cert using keytool.exe and we added the sites/
endpoints we was testing in the Subject Alternative Name section of the certificate. We
then added the new certificate to the browser’s trust store:
1. Create certificate using keytool.exe and add the sites/endpoints you are testing that are

blocking content from being shown in browser. Example below:

keytool -genkeypair -keystore keystore -dname "CN=test, OU=Unknown, O=Unknown,
 L=Unknown, ST=Unknown, C=Unknown" -storepass password -keyalg RSA -alias self-
signed-cert –ext SAN=dns:domain1,dns:domain2

You can add as many SANs as you want. Delimit them with “:” and if you are adding
a DNS name, start with dns:

2. Launch tcpproxy with the keystore generated above: java -classpath
%CLASSPATH% net.grinder.TCPProxy -keyStore path to above
keystore -keyStorePassword password -console -http >
script.py

3. Point your browser to the proxy, you will get a certificate error. IE for some reason
didn't allow us to export the certificate, so we used Chrome. Export in base64 format.

4. Then in IE, imported the certificate to the trust store: Internet Options > Content
> Certificates > Trusted Root Certification Authorities > Import. Browse to the
exported certificate from step 3 above and import.

5. Restart the browser and navigate to the app. Your certificate should now be valid and
content that was blocked should now be visible since the domains that were blocking
the content are valid for the certificate provided (from step 1).

6 Using the TCPProxy with other proxies

The TCPProxy can be used with other HTTP/HTTPS proxies.

The TCPProxy

Page 12Copyright © 2013 Philip Aston, Calum Fitzgerald All rights reserved.

Use the -httpproxy option to specify the host name and port of the proxy. Use the -
httpsproxy option only if your HTTPS proxy requires separate settings.

7 Using the TCPProxy as a port forwarder

It is normally most useful to use the TCPProxy in its HTTP Proxy mode as described
above.

When using the TCPProxy as a debugging tool it occasionally is useful to use it in port
forwarding mode. This mode is enabled when one or more of -remotehost and -
remoteport are specified. In port forwarding mode, the TCPProxy simply listens on
localhost:localport and forwards to remotehost:remoteport.

To understand why HTTP Proxy mode is usually better than port forwarding mode
when using a browser, consider what happens if the remote server returns a page with
an absolute URL link back to itself. If you click on the link, the browser will contact the
server directly, bypassing the TCPProxy. Another disadvantage is that you can't use the
TCPProxy with more than one remote sever.

8 Summary of TCPProxy options

Option Description

Commonly used options

-console Display a simple console that has a control button
that allows The TCPProxy to be shut down cleanly.
This can help in certain situations where a hard kill
of the TCPProxy process would lose output that is
still buffered in memory.

-http [stylesheet] Adds a standard request filter and response filter
to produce a Jython script for The Grinder suitable
for use with the HTTP plugin. The default filter
generates a Jython script and is equivalent to -
http jython. Alternatively, use clojure
to produce a Clojure script, or the output can be
customised completely by providing the file name
of an XSLT style sheet.

-requestfilter filter Add a request filter. filter can be
the name of a class that implements

The TCPProxy

Page 13Copyright © 2013 Philip Aston, Calum Fitzgerald All rights reserved.

Option Description

net.grinder.tools.tcpproxy.TCPProxyFilter
or one of NONE, ECHO. The option can be specified
multiple times, in which case the filters are invoked
one after another. If the not specified, the default
ECHO filter is used.

-responsefilter filter Add a response filter. filter can be
the name of a class that implements
net.grinder.tools.tcpproxy.TCPProxyFilter
or one of NONE, ECHO. The option can be specified
multiple times, in which case the filters are invoked
one after another. If the not specified, the default
ECHO filter is used.

-localhost host Set the host name or IP address to listen on.
This must correspond to an interface of the
machine the TCPProxy is started on. The default is
localhost.

-localport port Set the port to listen on. The default is 8001.

-keystore file Specify a custom key store. Usually the built-in
keystore is good enough so -keystore does not
need to be specified.

-keystorepassword password Set the key store password. Only used if -
keystore is set. Optional for some key store
types.

-keystoretype type Set the key store type. Only used if -keystore
is set. If not specified, the default value depends on
JSSE configuration but is usually jks.

Less frequently used options

-properties file Specify a file containing properties that are passed
on to the filters.

-remotehost host Set the host name or port the TCPProxy should
connect to in port forwarding mode. The TCPProxy
starts in port forwarding mode if either -
remotehost or -remoteport is set. The
default is localhost.

-remoteport port Set the port the TCPProxy should connect to in
port forwarding mode. The TCPProxy starts in port
forwarding mode if either -remotehost or -
remoteport is set. The default is 7001.

-timeout seconds Set an idle timeout. This is how long the TCPProxy
will wait for a request before timing out and freeing
the local port. The TCPProxy will not time out if
there are active connections.

-httpproxy host port Specify that output should be directed through
another HTTP/HTTPS proxy. This may help you
reach the Internet. This option is not supported in
port forwarding mode.

The TCPProxy

Page 14Copyright © 2013 Philip Aston, Calum Fitzgerald All rights reserved.

Option Description

-httpsproxy host port Specify that output should be directed through a
HTTPS proxy. Overrides any -httpproxy
setting. This option is not supported in port
forwarding mode.

-ssl Use SSL in port forwarding mode. This will
make both the TCPProxy's local socket and the
connections to the target server use SSL. The
default HTTP Proxy mode ignores this option and
always listens as an HTTP proxy and an HTTPS
proxy.

-colour Specify that a simple colour scheme should be
used to distinguish request streams from response
schemes. This uses terminal control codes that only
work on ANSI compliant terminals.

-component class Register a component class with the filter
PicoContainer.

-debug Make PicoContainer chatty.

	Table of contents
	1 Starting the TCPProxy
	2 Preparing the Browser
	3 Using the EchoFilter
	4 Using the HTTP TCPProxy filters
	4.1 Generating a Clojure script
	4.2 Altering the output with custom stylesheet
	4.3 How to offset test numbers
	4.4 How to record additional headers

	5 SSL and HTTPS support
	5.1 Custom certificates

	6 Using the TCPProxy with other proxies
	7 Using the TCPProxy as a port forwarder
	8 Summary of TCPProxy options

